Responsive image
博碩士論文 etd-0812100-121617 詳細資訊
Title page for etd-0812100-121617
論文名稱
Title
電動力-Fenton法結合生物分解現地處理受五氯酚污染之研究
A Study On In-Situ Treatment of PCP Contaminated Soils by Electrokinetics-Fenton Process Combined with Biodegradation
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
203
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2000-06-08
繳交日期
Date of Submission
2000-08-12
關鍵字
Keywords
Fenton法、生物分解、電動力、五氯酚、土壤污染
Biodegradation, Fenton Process, Electrokinetic Process, Soil Contamination, Pentachlorophenol
統計
Statistics
本論文已被瀏覽 5626 次,被下載 67
The thesis/dissertation has been browsed 5626 times, has been downloaded 67 times.
中文摘要
摘 要
本研究為探討電動力-Fenton法結合生物降解現地處理受五氯酚污染土壤之整治成效,採用的恆定操作條件為:1V/cm的電位梯度及石墨電極,而改變的操作參數為:土壤的種類、催化劑的種類及劑量、過氧化氫的濃度、陰極槽液以及操作的時間等。
研究結果發現,不論在電動力-Fenton法或在後續進行之電動力-微生物降解實驗中,延長反應時間可提昇土壤中標的污染物之總破壞去除率。使用0.0196M硫酸亞鐵與3.5﹪過氧化氫者之總破壞去除率僅比以0.098M硫酸亞鐵與0.35﹪過氧化氫者低約2﹪,表示使用0.0196M硫酸亞鐵即可提供足量亞鐵離子使其與過氧化氫反應。
將過氧化氫濃度由0.35﹪增為3.5﹪,則其總破壞去除率將由68.34﹪提升為79.77﹪。使用鐵粉為催化劑時,在近陽極端所殘餘之五氯酚濃度較以0.0196M硫酸亞鐵為催化劑者為低,但其總破壞去除率為56.58﹪,較以0.0196M硫酸亞鐵為催化劑之68.34﹪為低。至於不同土壤對電動力-Fenton法之影響,由實驗結果得知,No. 2土樣在反應後殘餘之污染物濃度較No. 1土樣者高,且總破壞去除率僅有59.22﹪,此可能因No. 2土樣中所含的有機物含量較高,而與標的污染物競爭氫氧自由基,致使處理效率較差。
至於不同槽液種類之影響,在本研究中選用0.1M醋酸緩衝液為陰極槽液,期能增加污染物去除率,在反應終了時,使用緩衝液之組別其總破壞去除率為64.32﹪,由此實驗結果得知並無達到將污染物由土壤中之去除率提高的預期處理成效。另以電動力配合微生物共代謝進行標的污染物降解的實驗發現,其處理效率僅達25.67﹪,而土壤管柱各段之污染物含量仍高;但在結合電動力-Fenton法作為前處理,則發現微生物降解污染物的效率提昇,甚至在將反應天數延長後,可將污染物由土壤中完全去除。若僅利用土壤中天然存在鐵礦物進行電動力-Fenton法實驗,則去除率僅達20~30﹪,且以No. 2土樣之總破壞去除率較高,此應與其土壤中所含鐵量較高有關,能產生較多之氫氧自由基以破壞污染物。

Abstract
Abstract
This research was to evaluate the treatment efficiency for in-situ treatment of pentachlorophenol (PCP) contaminated soil by electrokinetics-Fenton process combined with biodegradation. An electric gradient of 1V/cm, and graphite electrodes were employed in all experiments. Soil types, catalyst types and dosage, hydrogen peroxide concentration, cathode reservoir liquid species and reaction time were employed as the experimental factors in this study.
In this study, no matter electrokinetics-Fenton process or the electrokinetics-biodegradation in the latter, prolong the reaction time can promote the removal and destruction efficiency (DRE) of target pollutant from soil. By using 0.0196 M FeSO4 with 3.5% H2O2, the DRE was only lower 2% than 0.098 M FeSO4 with 3.5% H2O2.It showed that using 0.0196 M FeSO4 can provide enough Fe2+ to react with H2O2.
By increasing H2O2 concentration from 0.35% to 3.5%, a DRE rised from 68.34% to 79.77%. When iron powder was used as catalyst, the residual pentachloroplenol concentration near to anode reservoir lower than 0.0196 M FeSO4 was used. But the DRE was 56.58% lower than the 68.34% of using 0.0196 M FeSO4.As the influences of soil types to electrokinetics-Fenton process, the residual concentration of pollutant for Soil No. 2 was higher than Soil No. 1. A DRE of only 59.22% was obtained. It is postulated that a much higher content of organic matter with Soil No. 2 whereas lower the treatment efficiency because of consumption of hydroxyl radicals by the organic matter of soil. For the influence of different reservoir liquid species, in this study 0.1M acetic buffer solution was used as cathode reservoir liquid, expected to promote the removal efficiency. From the result of experiment that could not reach the expected treatment efficiency of increasing the removal efficiency from soil. From the experiment of electrokinetics process combined with cometabolism, a treatment efficiency of only 25.67% was obtained. The content of pollutant within every section of soil column were still higher than predict. But by using electrokinetics-Fenton process to pretreat the pollutant within soil first, the increasing efficiency of biodegradation was found. Even when reaction time was prolonged, the pollutant could be completely eliminated from soil. If only used iron minerals to proceed electrokinetics-Fenton process naturally exited in the soil, a DRE of only 20
目次 Table of Contents
目 錄
頁次
謝誌 i
摘要 ii
Abstract iv
目錄 vi
表目錄 x
圖目錄 xii
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 4
1.3 研究內容 5
第二章 基本理論與文獻回顧 6
2.1 氯酚類化合物之基本性質及其危害性 6
2.2 五氯酚的基本性質及其特性 10
2.3 Fenton法之理論及相關研究 15
2.3.1 Fenton法反應機制 15
2.3.2 影響Fenton法反應之因子 17
2.3.3 Fenton法處理土壤中有機污染物之研究 21
2.3.4 Fenton法結合其他技術處理土壤中有機污染物 27
2.4 電動力法相關理論及研究 28
2.4.1 電動力法之傳輸反應機制 28
2.4.2 電動力法之影響因子 34
2.4.3 電動力法可處理的廢棄物及介質 34
2.4.4 優點與限制 38
2.5 生物復育法之相關理論及研究 39
2.5.1 基本理論…………………………………………………..40
2.5.2 影響生物生長及污染物降解之因子……………………..41
2.5.3 生物復育法之優點與缺點及研究 42
2.5.4 以生物復育法處理土壤中有機污染物之研究…………..43
第三章 實驗材料、方法與架構 47
3.1 實驗材料 47
3.1.1 土樣來源與前處理 47
3.1.2 試藥及材料 47
3.2 實驗設備 52
3.2.1 電動力-Fenton法處理系統 52
3.2.2 微生物馴養 53
3.2.3 其它儀器設備 55
3.3 研究架構 57
3.4 土壤樣品基本性質分析 61
3.4.1 pH值 61
3.4.2 含水份 61
3.4.3 比重 62
3.4.4 有機物含量 64
3.4.5 灼燒減量 64
3.4.6 陽離子交換容量 64
3.4.7 粒徑分析 64
3.4.8 有機物質含量 45
3.5 人工污染土配製及管柱裝填 67
3.5.1 人工污染土配製程序 67
3.5.2 污染土管柱裝填程序 67
3.6 反應前後及過程分析 68
3.6.1 反應前後分析 68
3.6.2 反應過程分析 69
第四章 結果與討論 72
4.1 土壤樣品基本性質分析 72
4.1.1 pH值 72
4.1.2 含水份 72
4.1.3 比重 72
4.1.4 有機物含量 72
4.1.5 灼燒減量 72
4.1.6 陽離子交換容量 73
4.1.7 粒徑分佈 73
4.1.8 比表面積………………………………………………..74
4.1.9 土壤中總鐵的含量 74
4.2 電動力-Fenton法處理受五氯酚污染之土壤 76
4.2.1 延長反應時間之影響 76
4.2.2 不同催化劑濃度的影響 92
4.2.3 不同過氧化氫濃度之影響 97
4.2.4 不同催化劑型態之影響 104
4.2.5 不同土樣之影響 110
4.2.6 不同槽液種類之影響 117
4.2.7 微生物共代謝之影響 123
4.2.8 電動力-Fenton法配合微生物共代謝之實驗 128
4.2.8.1 不同土樣之影響 128
4.2.8.2 反應時間延長對處理效率之影響 134
4.2.9 未添加催化劑的影響 139
4.2.10 電動力法處理效率探討 147
4.2.11 最佳操作條件評析 150
4.2.12 電動力法結合生物分解處理五氯酚污染土壤之經濟效益評估 154
第五章 結論與建議 156
5.1 結論 156
5.2 建議 159
參考文獻 162
附錄 實驗數據 180

表目錄
頁次
表1-1 受污染土壤整治技術 3
表2-1 常用氯酚化合物之合成及用途 6
表2-2 水中氯酚之嗅覺及味覺閥值 8
表2-3 氯酚類化合物之基本性質 9
表2-4 五氯酚之基本物化特性 11
表2-5 各種常見氧化劑的氧化還原電位 12
表2-6 系統pH值對Fenton反應之影響 13
表2-7 Fenton法處理受有機物污染土壤之相關研究 22
表2-8 電場作用下之土壤物種傳輸方程式 33
表2-9 電動力法處理土壤中有機污染物之相關研究 36
表2-10 土壤中有機物分解時所扮演的角色 40
表2-11 生物復育法處理受有機物污染土壤之研究 44
表3-1 無機營養鹽成分及添加量 53
表3-2 電動力-Fenton 法結合生物分解法現地處理受五氯酚污染土壤之實驗計劃表 59
表3-3 不同溫度下的水之相對密度及校正因子K值 63
表4-1 土壤基本性質分析結果 75
表4-2 Test 1至Test 5之電滲透係數 80
表4-3 Test 1及Test 2、Test 4及Test 6的五氯酚質量平衡表 90
表4-4 Test 1與Test 3的五氯酚質量平衡表 96
表4-5 Test 1與Test 4的五氯酚質量平衡表 101
表4-6 Test 4與Test 7的五氯酚質量平衡表 108
表4-7 Test 4及Test 8的五氯酚質量平衡表 115
表4-8 Test 4與Test 9的五氯酚質量平衡表 121
表4-9 Test 11與Test 12的五氯酚質量平衡表 133
表4-10 Test 11與Test 13的五氯酚質量平衡表 138
表4-11 Test 14及Test 15的五氯酚質量平衡表 143
表4-12 Test 16的五氯酚質量平衡表 149
表4-13 電動力-Fenton法結合生物分解現地處理受五氯酚污染土壤之研究 152
表4-14 Test 1至Test 16之電滲透係數 153
表4-15 電動力-Fenton法處理受五氯酚污染土壤之操作費 156

圖目錄
頁次
圖2-1 電場作用下各種化學物種移動變化情形 31
圖2-2 電場作用下離子物種遷移情形 31
圖2-3 土壤復育技術採用比例圖 39
圖3-1 UPF-030鐵粉之X光繞射圖譜 48
圖3-2 電動力-Fenton法土壤污染處理實驗設備示意圖 52
圖3-3 酚分解菌馴養設備圖 54
圖3-4 電動力-Fenton法結合生物分解處理受五氯酚污染土壤流程圖 60
圖4-1 美國農業部(USDA)一般土壤質地分類圖 74
圖4-2 Test 1與Test2陽陰極槽液pH值隨處理時間之變化圖 77
圖4-3 Test 5與Test 6陽陰極槽液pH值隨處理時間變化圖 77
圖4-4 Test 1與Test 2電流隨處理時間變化圖 78
圖4-5 Test 5與Test 6電流隨處理時間變化圖 78
圖4-6 Test 1與Test 2累積電滲透流量隨處理時間變化圖 79
圖4-7 Test 5與Test6累積電滲透流量隨處理時間變化圖 79
圖4-8 Test 1 與Test 2陽極槽累積消耗過氧化氫質量隨處理時間變化圖 82
圖4-9 Test 5與Test 6陽極槽累積消耗過氧化氫隨處理時間變化圖 82
圖4-10 Test 1 反應後土壤管柱內部的pH值分佈圖 83
圖4-11 Test 2 反應後土壤管柱內部的pH值分佈圖 83
圖4-12 Test 5 反應後土壤管柱內部的pH值分佈圖 84
圖4-13 Test 6 反應後土壤管柱內部的pH值分佈圖 84
圖4-14 Test 1 反應後土壤管柱內部含水率分佈圖 85
圖4-15 Test 2 反應後土壤管柱內部含水率分佈圖 85
圖4-16 Test 5 反應後土壤管柱內部含水率分佈圖 86
圖4-17 Test 6 反應後土壤管柱內部含水率分佈圖 86
圖4-18 Test 1 反應後土壤管柱內部殘餘五氯酚分佈圖 88
圖4-19 Test 2反應後土壤管柱內部殘餘五氯酚分佈圖 88
圖4-20 Test 5反應後土壤管柱內部殘餘五氯酚分佈圖 89
圖4-21 Test 6反應土壤管柱內部殘餘五氯酚分佈圖 89
圖4-22 Test 1與Test 2之五氯酚質量平衡圖 90
圖4-23 Test 5與Test 6之五氯酚質量平衡圖 91
圖4-24 Test 1 與 Test 3陽、陰極槽液pH值隨處理時間的變化圖 93
圖4-25 Test 1 與 Test 3 電流隨處理時間的變化圖 92
圖4-26 Test 1 與 Test 3 累積電滲透流量隨處理時間的變化圖 94
圖4-27 Test 1與Test3累積消耗過氧化氫隨處理時間變化圖 94
圖4-28 Test 1反應後土壤管柱內部殘餘五氯酚含量分佈圖 95
圖4-29 Test 1反應後土壤管柱內部殘餘五氯酚含量分佈圖 95
圖4-30 Test 1與Test 3之五氯酚質量平衡圖 96
圖4-31 Test 1 與 Test 4 陽陰極槽液pH值隨處理時間變化圖 98
圖4-32 Test 1 與 Test 4電流隨處理時間變化圖 98
圖4-33 Test 1 與Test4累積電滲透流量隨處理時間變化圖 99
圖4-34 Test 1 與 Test 4 陽極槽累積消耗的過氧化氫質量隨處理時間之變化圖 99
圖4-35 Test 1 反應後土壤管柱內部殘餘五氯酚含量分佈圖 100
圖4-36 Test 4 反應後土壤管柱內部殘餘五氯酚含量分佈圖 100
圖4-37 Test 1與Test 4之五氯酚質量平衡圖 101
圖4-38 Test 4 反應後土壤管柱內部pH值分佈圖 102
圖4-39 Test 4 反應後土壤管柱內部含水率分佈圖 103
圖4-40 Test 4 與 Test 7 陽、陰極槽液pH值隨處理時間變化圖 105
圖4-41 Test 1 與 Test 4電流隨處理時間變化圖 105
圖4-42 Test 4 與Test 7累積電滲透流量隨處理時間變化圖 106
圖4-43 Test 4 與 Test 7 陽極槽累積消耗的過氧化氫質量隨處理時間之變化圖 106
圖4-44 Test 4 反應後土壤管柱內部殘餘五氯酚含量分佈圖 107
圖4-45 Test 7 反應後土壤管柱內部殘餘五氯酚含量分佈圖 107
圖4-46 Test 4與Test 7之五氯酚質量平衡圖 108
圖4-47 Test 4 反應後土壤管柱內部pH值分佈圖 109
圖4-48 Test 7 反應後土壤管柱內部pH值分佈圖 109
圖4-49 Test 4 與 Test 8 陽、陰極槽液pH值隨處理時間之變化圖 112
圖4-50 Test 4 與 Test 8 電流隨處理時間之變化圖 112
圖4-51 Test 4 與Test 8累積電滲透流量隨處理時間變化圖 113
圖4-52 Test 4 與Test 8陽極槽累積消耗過氧化氫質量隨處理時間變化圖 113
圖4-53 Test 4 反應後土壤管柱內部殘餘五氯酚含量分佈圖 114
圖4-54 Test 8 反應後土壤管柱內部殘餘五氯酚含量分佈圖 114
圖4-55 Test 4與Test 8之五氯酚質量平衡圖 115
圖4-56 Test 8 反應後土壤管柱內部pH值分佈圖 116
圖4-57 Test 8 反應後土壤管柱內部含水率分佈圖 116
圖4-58 Test 4 與 Test 9 陽、陰極槽液pH值隨處理時間之變化圖 119
圖4-59 Test 4與Test 9電流隨處理時間變化圖 119
圖4-60 Test 4 與 Test 9 累積電滲透流量隨處理時間的變化圖 120
圖4-61 Test 4 與 Test 9 累積消耗過氧化氫質量隨處理時間的變化圖 120
圖4-62 Test 9 反應後土壤管柱內部殘餘的五氯酚含量分佈圖 121
圖4-63 Test 4與Test 9之五氯酚質量平衡圖 122
圖4-64 Test 9 反應後土壤管柱內部pH值分佈圖 122
圖4-65 Test 10 陽、陰極槽液pH值隨處理時間之變化圖 125
圖4-66 Test 10 電流隨處理時間之變化圖 125
圖4-67 Test 10 累積電滲透流量隨處理時間之變化圖 126
圖4-68 Test 10反應後土壤管柱內部殘餘五氯酚含量分佈圖 126
圖4-69 Test 10之五氯酚質量平衡圖 127
圖4-70 Test 10 反應後土壤管柱內部pH值分佈圖 127
圖4-71 Test 11 與 Test 12 陽極槽液pH值隨處理時間之變化圖 130
圖4-72 Test 11 與 Test 12 陰極槽液pH值隨處理時間之變化圖 130
圖4-73 Test 11與Test 12 電流隨處理時間之變化圖 131
圖4-74 Test 11與Test 12累積電滲透流量隨處理時間的變化圖 131
圖4-75 Test 11反應後土壤管柱內部殘餘五氯酚含量分佈圖 132
圖4-76 Test 12反應後土壤管柱內部殘餘五氯酚含量分佈圖 132
圖4-77 Test 11與Test 12之五氯酚質量平衡圖 133
圖4-78 Test 11 與 Test 13 陽極槽液pH值隨處理時間之變化圖 135
圖4-79 Test 11 與 Test 13 陰極槽液pH值隨處理時間之變化圖 135
圖4-80 Test 11與 Test 13電流隨處理時間變化圖 136
圖4-81 Test 11與Test 13累積電滲透流量隨處理時間的變化圖 136
圖4-82 Test 11反應土壤管柱內部殘餘的五氯酚含量分佈圖 137
圖4-83 Test 13反應土壤管柱內部殘餘的五氯酚含量分佈圖 137
圖4-84 Test 11與Test 13之五氯酚質量平衡圖 138
圖4-85 Test 14 與 Test 15 陽陰極槽液的pH值隨處理時間的變化圖 141
圖4-86 Test 14 至 Test 15 電流隨處理時間之變化圖 141
圖4-87 Test 14 至 Test 15 累積電滲透流量隨處理時間的變化圖 142
圖4-88 Test 14至Test 15陽極槽累積消耗的過氧化氫質量隨處理時間之變化圖 142
圖4-89 Test 14與Test 15之五氯酚質量平衡圖 143
圖4-90 Test 14 反應後土壤管柱內部pH值分佈圖 144
圖4-91 Test 15 反應後土壤管柱內部pH值分佈圖 144
圖4-92 Test 14 反應後土壤管柱內部含水率分佈圖 145
圖4-93 Test 15 反應後土壤管柱內部含水率分佈圖 145
圖4-94 Test 14反應後土壤管柱內部五氯酚殘餘含量分佈圖 146
圖4-95 Test 15反應後土壤管柱內部五氯酚殘餘含量分佈圖 146
圖4-96 Test 16陽、陰極槽液pH值隨處理時間變化圖 148
圖4-97 Test 16電流隨處理時間之變化圖 148
圖4-98 Test 16反應後土壤管柱內部五氯酚殘餘含量分佈圖 149
圖4-99 累積電滲透流流量與總破壞去除率關係圖 153
圖4-100 陽極槽累積消耗過氧化氫質量與總破壞去除率關係圖 154
圖4-101 累積電滲透流流量與陽極槽累積消耗過氧化氫質量關係圖 154

參考文獻 References
參考文獻
1. Haan, F. A. and P. J. Zwerman, “Pollution of Soil”, In Bolt, G.H. and M.G.M. Bruggenwert (eds.), Soil Chemistry , Elsevier Scientific Pub. Co., New York, pp. 192-271, 1976.
2. 胡漢升,「環境醫學」,科技圖書股份有限公司,台北,1989。
3. 卓英仁,「我國土壤污染現況分析及防治政策之研究」,環保通訊雜誌社,台北,1990。
4. 嚴式清, “台灣土壤污染之研究概況”,工業污染防治第六期,第10~17頁,1983。
5. 歐陽嶠暉,「環境污染與防治概論」,教育部環境保護小組,台北,1992。
6. 鄭介松, “土壤污染整治法修訂之沿革及展望”,環境分析技術(五)研討會,台南,2000。
7. 行政院環保署,http://www.epa.gov.tw/。
8. 盧至人,「地下水的污染整治」,國立編譯館,台北,1997。
9. Lyman, W. J., D. C. Noonan, and P. J. Reidy, “Cleanup of Petroleum Contaminated Soils at Underground Storage Tanks”, Noyes Data Corporation, Park Ridge , N.J., U.S.A., 1990.
10. Kostecki, P. T. and E. J. Calabrese, “Petroleum Contaminated Soils, Volume I”, Lewis Publishers Inc, Chelsea, Michigan, 1989.
11. Chung, N. and S. D. Aust, “Degradation of Pentachlorophenol in Soil by Phanerochaete Chrysosporium”, Journal of Hazardous Materials, Vol. 41, pp. 177~183, 1995.
12. 王一雄,「土壤環境污染與農藥」,明文書局,台北,1997。
13. 王碧,「環境中有機毒性物質分析方法之研究」,環保通訊雜誌社,台北,1988。
14. 行政院環保署,http://www.epa.gov.tw/J/toxic/chemical.data/。
15. 張碧芬、王一雄,「台灣地區土壤中有機毒性物質之調查-有機毒性物質在環境中之流佈及對環境影響評估」,行政院環境保護署研究計畫成果報告,計畫編號EPA80-H103-09-19,1991。
16. 張碧芬,「氯酚化合物在土壤中生物分解之研究」,行政院國家科學委員會專題研究計畫成果報告,行政院國科會科資中心,台北,1996。
17. 物質安全資料表,編號: HSN-894。
18. Melin, F. S., J. F. Ferguson, and J. A. Puhakka, “Pentachlrophenol Biodegradation Kinetics of an Oligotrophic Fluidized-Bed Enrichment Culture”, Applied Microbiological Biotechnology, Vol. 47, pp. 675~682, 1997.
19. Tanjore, S. and T. Viraraghavan, “Effect of Oxygen in the Adsorption of Pentachlorophenol by Peat From Water”, Water, Air, and Soil Pollution, Vol. 100, pp. 151~162, 1997.
20. Meyer, A. and W. Kleibohmer, “Comparison of Supercritical Fluid Extraction with in Situ Derivatization and Conventional Extraction Methods for the Analysis of Pentachlorophenol in Wood and Leather”, Journal of Chromatographic Science, Vol. 35, 165~168, 1997.
21. Oubina, A., D. Puig, J. Gascon, and D. Barcelo, “Determination of Pentachlorophenol in Certified Waste Waters, Soil Samples and Industrial Effluents Using ELISA and Liquid Solid Extraction Followed by Liquid Chromatography”, Analytic Chimera Acta, Vol. 346, pp. 49~59, 1997.
22. Okeke, C., A. Paterson, J. E. Smith, and A. Watson-Craik, “Comparative Biotransformation of Pentachlorophenol in Soils by Solid Substrate Cultures of Lentinula Edodes”, Applied Microbiological Biotechnology, Vol. 48, pp. 563~569, 1997.
23. McCarthy, D. L., A. A. Claude, and S. D. Copley, “In Vivo Levels of Chlorinated Hydroquinones in a Pentachlorophenol-Degrading Bacterium”, Vol. 63, No. 5, pp. 1883~1888, 1997.
24. Kanters, M. J. and R. Louw, “Slow Combustion of Pentachlorophenol in Toluene”, Chemosphere, Vol. 33, No. 10, pp. 1889~1896, 1996.
25. Beelen, P. V. and A. K. Fleuren-Kemila, “Influence of pH on the Toxic Effects of Zinc, Cadmium, and Pentachlorophenol on Pure Cultures of Soil Microorganisms”, Environmental Toxicology and Chemistry, Vol. 16, No. 2, pp. 146~153, 1997.
26. 張淑芳、高思懷, “Fenton法之原理與應用”,工業污染防治,第56期,第192~204頁,1995。
27. Kang, S. F. and H. M. Chang, “Coagulation of Textile Secondary Effluents with Fenton’s Reagent”, Water Science and Technology, Vol. 36, No. 12, pp. 215~222, 1997.
28. Lin, S. H., C. M. Lin, and H. U. Leu, “Operating Characteristics and Kinetic Studies of Surfactant Wastewater Treatment by Fenton Oxidation”, Water Research, Vol. 34, No. 7, pp. 1735~1741, 1999.
29. Muto, H., F. Shunzaburo, and S. Miyoshi, “Heterogeneous Wet-Decomponents in Ash Filtrate Samples by Fenton’s Reagent, Titanium Dioxide and Granite Porphyry Powders”, Journal of Environmental Science and Health, Vol. A32, No. 2, pp. 517~525, 1997.
30. Tang, W. Z. and S. Tassos, “Oxidation Kinetics and Mechanisms of Trihalomethanes by Fenton’s Reagent”, Water Research, Vol. 31, No. 5, pp. 1117~1125, 1997.
31. Ruppert, G., R. Bauer, and G. Heisler, “UV-O3, UV-H2O2,UV-TiO2 and the Photo-Fenton Reaction Comparison of Advanced Oxidation Processes for Wastewater Treatment”, Chemosphere, Vol. 28, No. 8, pp. 1447~1454, 1994.
32. Lin, S. H. and C. C. Lo, “Fenton Process for Treatment of Desizing Wastewater”, Water Research, Vol. 31, No. 8, pp. 2050~2056, 1997.
33. Zhu, W., Z. Yang, and L. Wang, “Application of Ferrous-Hydrogen Peroxide for the Treatment of H-Acid Manufacturing Process Wastewater”, Water Research, Vol. 30, No. 9, pp. 2949~2954, 1996.
34. Kuo, W. G, “Decolorizing Dye Wastewater with Fenton’s Reagent”, Water Research, Vol. 26, No. 7, pp. 881~886, 1992.
35. Lin, S. H. and M. L. Chen, “Purification of Textile Wastewater Effluents by a Combined Fenton Process and Ion Exchange”, Desalination, Vol. 109, pp. 121~130, 1997.
36. Yoon, J., Y. Cho, and S. Kim, “The Characteristics of Coagulation of Fenton Reaction in the Removal of Landfill Leachate Organics”, Water Science and Technology, Vol. 38, No. 2, pp. 209~214, 1998.
37. Gau, S. H. and F. S. Chang, “Improved Fenton Method to Remove Recalcitrant Organics in Landfill Leachate”, Water Science and Technology, Vol. 34, No. 7-8, pp. 455~462, 1996.
38. Kang, S. H., T. H. Wang, and Y. H. Lin, “Decolorization and Degradation of 2,4-Dinitrophenol by Fenton’s Reagent”, Journal of Environmental Science and Health, Vol. A34, No. 4, pp. 935~950, 1999.
39. Kwon, B. G., D. S. Lee, N. Kang. and J. Yoon, “Characteristics of P-Chlorophenol Oxidation by Fenton’s Reagent”, Water Research, Vol. 33, No. 5, pp.2110~2118, 1999.
40. Huang, C. P., C. D. Dong, and Z. H. Tang, “Advanced Chemical Oxidation: Its Present Role and Potential Future in Hazardous Waste Treatment”, Waste Management, Vol.13, pp.361~377,1993.
41. 陳玄杰、謝能詠、陸為林,「分析化學」,高等教育出版社,北京,1995。
42. 程惠生、盧啟文、葉昭巖, “利用Fenton’s Reagent處理受Fluoranthene污染土壤之研究”,第十屆廢棄物處理技術研討會論文集,台南,第140~148頁,1995。
43. 張淑芳、高思懷、吳嘉麗, “pH值在Fenton系統中所扮演的角色探討”,第二十屆廢水處理技術研討會論文集,台北,第6-61~6-67頁,1995。
44. 高思懷、林奮宏、張芳淑, “Fenton 反應中無機鹽之影響”,第二十屆廢水處理技術研討會論文集,台北,第6-122~6-126頁,1995。
45. Lipczynska-Kochany, E., G. Sprah, and S. Harms, “Influence of Some Groundwater and Surface Waters Constituents on the Degradation of 4-Chlorophenol by the Fenton Reaction”, Chemosphere, Vol. 30, No. 1, pp. 9~20, 1995。
46. Lu, M. C., J. N. Chen, C. P. Chang, “Effect of Inorganic Ions on the Oxidation of Dichlorvos Insecticide With Fenton’s Reagent”, Chemosphere, Vol.35, No.10, pp.2285~2293,1997.
47. Nadtochenko, V. and J. Kiwi, “Photoindeuced Mineralization of Xylidine by the Fenton Reagent. 2. Implications of the Precursors Formed in the Dark”, Environmental Science and Technology, Vol. 32, pp. 3282~3285, 1998.
48. Ravikumar, J. X. and M. D. Gurol, “Chemical Oxidation of Chlorinated Organics by Hydrogen Peroxide in the Presence of Sand”, Environmental Science and Technology, Vol. 28, No. 3, pp. 394~400, 1994.
49. Waters, R. J. and K. C. Kakarla, “Depth of Fenton-Like Oxidation in Remediation of Surface Soil”, Journal of Environmental Engineering, Vol. 123, No.1, pp. 11~17, 1997.
50. Barbeni, M., C. Minero, E. Pelizzetti, E. Borgrelo, and N. Serpone, “Chemical Degradation of Chlorophenols with Fenton’s Reagent”, Chemosphere, Vol. 16, No. 10-12, pp. 2225~2237, 1987.
51. Tang, W. Z. and C. P. Huang, “The Effect of Chlorine Position of Chlorinated Phenols on their Dechlorination Kinetics by Fenton’ Reagent”, Waste Management, Vol. 15, No. 8, pp. 615~622, 1995.
52. Kolthoff, I. M. and A. I. Medalia, “The Reaction between Ferrous Iron and Peroxide.Ⅱ.Reaction with Hydrogen Peroxide, in the Presence of Oxygen”,Journal of American Chemical Society, Vol. 71, pp. 3784~3788, 1949.
53. Kolthoff, I. M. and A. I. Medalia, “The Reaction between Ferrous Iron and Peroxides. Ⅰ. Reaction with Hydrogen Peroxide,in the Absence of Oxygen”, Journal of American Chemical Society, Vol. 71, pp. 3777~3783, 1949.
54. 賴文煌,「利用Fenton法處理受酚與4-氯酚污染土壤之探討」,國立中山大學環境工程研究所碩士論文,1997。
55. 楊金鐘、賴文煌、龍玉文, “利用Fenton法處理受4-氯酚污染土壤之探討”,第十二屆廢棄物處理技術研討會論文集,台中,第329~334頁,1997。
56. 楊英賢、盧明俊、廖志祥、蔡宜宏, “結合Fenton法與活性污泥法處理染整廢水”,第二十二屆廢水處理技術研討會論文集,台中,第810~813頁,1997。
57. Watts, R. J., M. D. Udell, and R. M. Monsen, “Use of Iron Minerals in Optimizing the Peroxide Treatment of Contaminated Soils”, Water Environment Research, Vol. 65, No. 7, pp. 839~844, 1993.
58. Yeh, C. K. and J. T. Novak, “The Effect of Hydrogen Peroxide on the Degradation of Methyl and Ethyl Ter-butyl Ether in Soils”, Water Environment Research, Vol. 67, No. 5, pp. 828~834, 1995.
59. Li, Z. M., P. J. Shea, and S. D. Comfort, “Fenton Oxidation of 2,4,6-Trinitrotoluene in Contaminated Soil Slurries”, Environmental Engineering Science, Vol. 14, No.1, pp. 55~66, 1997.
60. Watts, R. J., A. P. Jones, P. H. Chen, and A. Kenny, “Mineral-Catalyzed Fenton –Like Oxidation of Sorbed Chlorophenol”, Water Environmental Research, Vol. 69, No. 3, pp. 269~275, 1997.
61. Kakarla, K. C.and R. J. Watts, “Depth of Fenton-Like Oxidation in Remediation of Surface Soil”, Journal of Environmental Engineering, Vol.123, No.1, pp.11~17,1997.
62. Chen, C. T., A. N. Tafuri, M. Rahman, and M. B. Foerst, “Chemical Oxidation Treatment of Petroleum Contaminated Soil Using Fenton’s Reagent”, Journal of Environment Science and Health, Vol. A33, No. 6, pp. 987~1008, 1998.
63. Lee, B. D., M. Hosomi, and A. Murakami, “Fenton Oxidation with Ethanol to Degrade Anthracene into Biodegradable 9,10-Anthraquinon:A Pretreatment Method for Anthracene Contaminated Soil”, Water Science Technology, Vol. 38, No. 7, pp. 91~97, 1998.
64. Wang, X. and M. L. Brusseau, “Effect of Pyrophosphate on the Dechlorinaton of Tetrachloroethene by the Fenton Reaction”, Environmental Toxicology and Chemistry, Vol. 17, No. 9, pp. 1689~1694, 1998.
65. 葉桂君、鄭仲彬, “Fenton法現地復育受氯酚污染土壤影響因子之探討”,第十一屆廢棄物處理技術研討會論文集,台北,第555~562頁,1996。
66. 葉桂君、高羽安、李尚璋、林麗卿, “Fenton氧化法中土壤吸附氯酚特性變化之探討”,第十三屆廢棄物處理技術研討會論文集,高雄,第181~188頁,1998。
67. 盧明俊、陳重男、黃旭暉, “探討土壤中針鐵礦催化過氧化氫分解2-氯酚之研究”,第十三屆廢棄物處理技術研討會論文集,高雄,第267~273頁,1998。
68. 黃旭暉、盧明俊、陳重男, “Hydrogen Peroxide Decomposition and 2-Chlorophenol Degradation in the Presence of Iron Oxide”,第十四屆廢棄物處理技術研討會論文集,中壢,第2-39~2-54頁,1999。
69. Arienzo, M., “Use of Abiotic Oxidative-Reductive Technologies for Remediation of Munitions Contaminated Soil in a Bioslurry Reactor”, Chemosphere , Vol. 40, pp. 441~448, 2000。
70. 楊金鐘、龍玉文, “電動力-似Fenton法處理受酚、4-氯酚污染砂質壤土之研究”,第十三屆廢棄物處理技術研討會論文集,高雄,第189~196頁,1998。
71. Lin, S. H. and M. L. Chen, “Purification of Textile Wastewater Effluents by a Combined Fenton Process and Ion Exchange”, Desalination, Vol. 109, pp. 121~130, 1997.
72. Bremner, D. H., S. R. Mitchell, and H. Staines, “Investigation into the Effect of Ultrasound on the Dimerization of Pivalic Acid Using Fenton’s Reagent”, Ultrasonic Sonochemistry, Vol. 3, pp. 47~52, 1996.
73. Sanchez, L., J. Peral. and X. Domenech, “Degradation of 2,4-Dichlorophenoxyacetic Acid by In Situ Photogenerated Fenton Reagent”, Electrochemica Acta, Vol. 41, No. 13, pp. 1981~1985, 1996.
74. Engwall, M. A., J. J. Pignatello, and D. Grasso, “Degradation and Detoxification of the Wood Preservatives Creosote and Pentachlorophenol in Water by the Photo-Fenton Reaction”, Water Research, Vol. 33, No. 5, pp. 1151~1158, 1999.
75. Miller, C. M., R. L. Valentine, M. E. Roehl, and P. J. Alvarez, “Chemical and Microbiological Assessment of Pendimethalin-Contaminated Soil After Treatment with Fenton’s Reagent”, Water Research, Vol.30, No. 11, pp. 2579~2586, 1996.
76. 趙聖傑、盧至人、李季眉、陳思曾, “過氧化氫及鐵離子對受芳香族污染的地下水之現地生物復育的影響”,第十九屆廢水處理技術研討會論文集,第449~457頁,台南,1994。
77. Larking, D. M., R. J. Crawford, G. Y. Christie, and G. T. Lonergan, “Enhanced Degradation of Polyvinyl Alcohol by Prcnoporus Cinnabarinus After Treatment with Fenton’s Reagent” ,Applied and Environmental Microbiology, Vol. 65, No. 4, pp. 1798~1800, 1999.
78. 王明光,「土壤環境化學」,國立編譯館,台北,1997。
79. Winterbourn, C. C., “Toxicity of Iron and Hydrogen Peroxide: The Fenton Reaction”, Toxicology Letters, Vol. 82, pp. 969~974, 1995.
80. Acar, Y. B. and A. N. Alshawabkeh, “Principals of Electrokinetic Remediation”, Environmental Science and Technology, Vol. 27, pp. 2638~2647, 1993.
81. Acar, Y. B., H. Li., R. J. Gale, “Phenol Removal From Kaolinite by Electrokinetics”, Journal of Geotechnical Engineering, Vol. 118, pp. 1837~1852, 1992.
82. Hamed, J. T., Y. B. Acar, and R. J. Gale, “Pb(Ⅱ) Removal From Kaolinite Using Electrokinetics”, Journal of Geotechnical Engineering, ASCE, Vol. 122, pp. 241~271, 1991.
83. Bruel,C. J., B. A. Segall and H. T. Walsh, “Electro-osmotic Removal of Gasoline Hydrocarbons and TCE From Clay”, Journal of Engineering, ASCE, Vol. 118, pp. 84~100, 1992.
84. Renauld, P.O. and R. F. Probstein, “Electro-osmotic Control of Hazardous Waste”, Physicochemical Hydrodynamics, Vol. 9, pp. 345~360, 1987.
85. Shapiro, A. P. and R. F. Probstein, “Removal of Contaminants From Saturated Clay by Electroosmosis”, Environmental Science and Technology, Vol. 27, pp. 283~291, 1993.
86. Shapiro, A. P., P. Renauld and R. F. Probstein, “Preliminary Studies on the Removal of Chemical Species from Saturated Porous Media by Electroosmosis”, Physicochemical Hydrodynamics, Vol. 11, pp. 785~802, 1989.
87. Smith, M. A.,“Contaminated Land”, Plenum Press, New York., 1985.
88. Acar, Y. B., A. N. Alshawabkeh, and R. J. Gale, “Fundamental s Aspects of Extracting Species From Soils by Electrokinetics”, Waste Management, Vol. 12, Pergamon, New York, pp. 1410~1421, 1993.
89. Acar, Y. B., R. J. Gale and G. Putnam, “Electrochemical Processing of Soils: Theory of pH Gradient Development by Diffusion and Linear Convection”, Journal of Environment Sciences and Health, Part(a):Environmental Science Engineering , Vol. 25, pp. 681~714, 1990.
90. Alshawabkeh, A. N. and Y. B. Acar, “Removal of Contaminants From Soils by Electrokinetics: A Theoretical Treatise, Journal of Environmental Science and Health”, Vol. 27, pp. 1835~1861, 1992.
91. 楊金鐘、林舜隆, “土壤污染電化學處理法-電動力整治技術”,經濟部工業局工業技術人才培訓計劃講義-事業廢棄物處理技術講習訓練班(第二階段),高雄,第315~349頁,1995。
92. Reed. B. E. and M. T. Berg, “In-Situ Electrokinetic Remediation of a Lead Contaminated Soil: (Ⅰ) A Theoretical Overview”, Proceedings of the 26th Mid-Atlantic Industrial Waste Conference, Newark, Delaware, U.S.A., pp. 480~485, 1994.
93. Reed, B. E. and M. T. Berg, “In-Situ Electrokinetic Remediation of a Lead Contaminated Soils: (Ⅱ) Effect of Reservoir Conditioning”, Proceedings of the 26th Mid-Atlantic Industrial Waste Conference, Newark, Delaware, U.S.A., pp. 514~521, 1994.
94. Acar, Y. B., R. J. Gale, A. N. Alshawabkeh, R. E. Marks, S. Puppala, M. Bicka, R. Parker, “Electrokinetic Remediation: Basic and Technology Status”, Journal of Hazardous Materials, Vol. 40, pp. 117~137, 1995.
95. Lageman, R., W. Pool, and G. Seffinga, “Electro-Reclamation:Theory and Practice”, Chemistry & Industry, Vol. 18, pp. 585~590, 1989.
96. Yeung, A. J., C. Hsu, and M. M. Rajendra, “Physicochemical Soil-Contaminant Interactions During Electrickinetic Extraction”, Journal of Hazardous Materials, Vol. 55, pp. 221~237, 1997.
97. Yu, J. W. and I. Neretnieks, “Theoretical Evaluation of a Technique for Electrokinetic Decontamination of Soils”, Journal of Contaminant Hydrology, Vol. 26, pp. 291~299, 1997.
98. Liu, B. and R. Liu, “Electrokinetic Remediation of Contaminated Soil”, Nonlinear Analysis, Theory, Methods & Applications, Vol. 30, No.6, pp. 3391~3398, 1997.
99. Baraud, F., S. Tellier, and M. Astruc, “Ion Velocity in Soil Solution During Electrokinetic Remediation”, Journal of Hazardous Materials, Vol. 56, pp. 315~332, 1997.
100. Acar, Y. B. and A. N. Alshawabkeh, “Principles of Electrokinetic Remediation”, Environmental Science and Technology, Vol. 27, No. 13, pp. 2638~2647, 1993.
101. Vane, L. M. and G. M. Zang, “Effect of Aqueous Phase Properties on Clay Particle Zeta Potential and Electro-osmotic Permeability:Implications for Electro-Kinetic Soil Remediation Process”, Journal of Hazardous Materials, Vol. 5, pp. 1~22, 1997.
102. Hamed, J. T.and A. Bhadra, “Influence of Current Density and pH on Electrokinetics”, Journal of Hazardous Materials, Vol. 55, pp. 279~294, 1997.
103. 薩支高、徐文逢, “環境變因對鎘污染土壤電動法移除效率影響”,第十四屆廢棄物處理技術研討會論文集,中壢,第2-79~2-86,1999。
104. Baraud, F., S. Tellier, and M. Astruc, “Temperature Effect on Ionic Transport During Soil Electrokinetic Treatment at Constant pH”, Journal of Hazardous Materials B: Vol. 64, pp. 263~281, 1999.
105. 洪肇嘉、吳惠銘、紀吉鴻、陳錕榮, “電動力復育鉻、鎘、鉛污染土壤之研究”,第十三屆廢棄物處理技術研討會論文集,高雄,第312~318頁,1998。
106. Leinz, R. W., D. B. Hoover, A. L. Meier, “NEOCHIM: an Electrochemical Method for Environmental Application”, Journal of Hazardous Materials, Vol. 64, pp. 421~434, 1998.
107. Puppala, S. K., A. N. Alshawabkeh, Y. B. Acar, R. J. Gale, M. Bricka, “Enhanced Electrokinetic Remediation of High Sorption Capacity Soil”, Journal of Hazardous Materials, Vol. 5, pp. 203~220, 1997.
108. Acar, Y. B., H. Li,and R. J. Gale, “Phenol Removal from Kaolinite by Electrokinetics”, Journal of Geotechnical Engineering, Vol. 118, No. 11, pp. 1837~1852, 1992
109. Shapiro, A. P. and R. F. Probstein, “Removal of Contaminants from Saturated Clay by Electroosmosis”, Environmental Science and Technology, Vol. 27, pp. 283~291, 1993.
110. Chew, C. F., and T. C. Zhang, “In-Situ Remediation of Nitrate-Contaminated Ground Water by Electrokinetic/Iron Wall Processes”, Water Science and Technology, Vol. 38, No. 7, pp. 135~142, 1998.
111. 張坤森, “發展改良式電動力學技術整治鎘污染土壤之研究”,第十三屆廢棄物處理技術研討會論文集,高雄,第205~209頁,1998。
112. 楊金鐘、薛威震, “利用電動力法結合陽離子交換樹脂反應牆現地整治受鉛銅污染土壤之研究”,第十四屆廢棄物處理技術研討會論文集,中壢,第2-24~2-31頁,1999。
113. 翁誌煌、陳仁慶、林裕雄、周協裕, “電動力法處理酚類污染土壤之可行性研究”,第十三屆廢棄物處理技術研討會論文集,高雄,第197~204頁,1998。
114. 翁誌煌、陳仁慶、涂宏旭、林裕雄、袁菁, “電動力復育受單氯酚污染黏質土壤之研究”,第十四屆廢棄物處理技術研討會論文集,中壢,第2-47~2-54頁,1999。
115. Ho, S. V., P. W. Sheridan, C. J. Athmer, M. A. Heitkamp, J. M. Brackin, D. Weber, and P. H. Brodsky, “Integrated In-Situ Soil Remediation Technology: The Lasagna Process”, Environmental Science and Technology, Vol. 29, pp. 2528~2534, 1995.
116. Takiyama, L. R. and C. P. Huang, “In-Situ Removal of Phenols from Contaminated Soil by Electro-Osmosis Process”, Proc. of 27th Mid-Atlantic Industrial & Hazardous Waste Conference, Lehigh U., Technomic Pub. Co., Lancaster, PA., pp.835~846, 1995.
117. 陳致谷、張添晉, “土壤污染生物復育技術之應用與展望”,工業污染防治,第53期,第113~138頁,1995。
118. 張萬權, “土壤污染之微生物復育法”,工業污染防治,第54期,第117~198頁,1995。
119. Cassidy, M. B., K. W. Shaw, H. Lee, and J. T. Trevors, “Enhanced Mineralization of Pentachlorophenol by k-Carrageenan –Encapsulated Pseudomonas sp. UG30”, Applied Microbiological Biotechnology, Vol. 47, pp. 108~113, 1997.
120. Chanama, S. and R. L. Crawford, “Mutational Analysis of pcpA and Its Role in Pentachlorophenol Degradation by Sphingomonas (Flavobacterium) chlorophenolica ATCC 39723”, Applied And Environmental Microbiology, Vol. 63, No. 12, pp. 4833~4838, 1997.
121. Miethling, R. and U. Karlson, “Accelerated Mineralization of Pentachlorophenol in Soil upon Incubation with Mycobacterium chlorophenolicum PCP1 and Sphingomonas chlorophenolica RA2”, Applied and Environmental Microbiology, Vol. 62, No.12, pp. 4361~4366, 1996.
122. Bouchard, B., R. Beaudet, R. Villemur, G. Mcsween, F. Lepine, and J. G. Bisaillon, “Isolation and Characterization of Desulfitobacterium frappieri sp. Nov., an Anaerobic Bacterium Which Reductively Dechlorinates Pentachlorophenol to 3-Chlorophenol”, International Journal of Systematic Bacteriology, Vol. 46, No. 4, pp. 1010~1015, 1996.
123. M. J. Levesque, R. Villemur, M. Chenier, F. Lepine, J. G. Bisaillon, “Anaerobic Biodegradation of Pentachlorophenol in a Contaminated Soils Inoculated with a Methanogenic Consortium or with Desulfitobacterium frappiere strain PCP-1”, Applied Microbiological Biotechnology, Vol. 50, pp. 135~141, 1998.
124. Johnson, C. R. and R. T. Lamar, “Polymerization of Pentachlorophenol and Ferulic Acid by Fungal Extracellular Lignin-Degrading Enzymes”, Applied and Environmental Microbiology, Vol. 62, No. 10, pp. 3890~3893, 1996.
125. Tuomela, M. M. Lyytikainen, M. and A. Hatakka, “Mineralization and Conversion of Pentachlorophenol in Soil Inoculated with the White-Rot Fungus Trametes Versicolor”, Soil Biology and Biochemistry, Vol. 31, pp. 65~74, 1999.
126. Johnson, C. R., and R. T. Lamar, “Binding of Pentachlorophenol to Humic Substances in Soil by the Action of White-Rot Fungi”, Soil Biological Biochemistry, Vol. 29, No.7, pp. 1143~1148, 1997.
127. Deflaun, M. F.and C. W. Condee, “Electrokinetic Transport of Bacteria”, Journal of Hazardous Materials, Vol. 55, pp. 263~277, 1997.
128. 張碧芬、劉正亞、袁紹英, “除草劑2,4-D及2,4,5-T在土壤中厭氣生物降解之研究”,第十二屆廢棄物處理技術研討會論文集,台中,第343~350頁,1997。
129. Divincenzo, C. P, and D. L. Sparks, “Slow Sorption Kinetics of Pentachlorophenol on Soil: Concentration Effects”, Environmental Science & Technology, Vol. 31, pp. 977~983, 1997.
130. 陳致谷、張添晉, “土壤污染復育工程技術”,工業污染防治,第45期,第43~65頁,1993。
131. 李茂山、盧至人, “受三氯乙烯污染土壤之生物復育”,第十三屆廢棄物處理技術研討會論文集,高雄,第246~252頁,1998。
132. 陳炳伸、李茂山、盧至人, “受2,4-二硝基酚污染土壤之生物復育”,第十三屆廢棄物處理技術研討會論文集,高雄,第292~298頁,1998。
133. 李茂山、盧至人, “受2,4-二氯酚污染土壤之生物復育”,第十三屆廢棄物研討會論文集,高雄,第299~304頁,1998。
134. Chung, N. and S. D. Aust, “Degradation of Pentachlorophenol in Soil by Phanerochaete Chrysosporium”, Journal of Hazardous Materials, Vol. 41, pp. 177~183, 1995.
135. Chang, B. V., L. N. Yeh, and S. Y. Yuan, “Effect of a Dichlorophenol–Adapted Consortium on the Dechlorination of 2,4,6-Trichlorophenol and Pentachlorophenol in Soil”, Chemosphere, Vol. 33, No. 2, pp. 303~311, 1996.
136. Edgehill, R. U., “Influence of Chromium and Acidic Conditions on Removal of Pentachlorophenol from Soil by Arthrobacter Strain ATCC 33790”, Water Research, Vol. 30, pp. 357~363, 1996.
137. McCarthy, D. L., A. A. Claude, and S. D. Copley, “In Vivo Levels of Chlorinated Hydroquinones in a Pentachlorophenol-Degrading Bacterium”, Applied and Environmental Microbiology, Vol. 63, No. 5, pp. 1883~1888, 1997.
138. M. J. Levesque, R. Villemur, M. Chenier, F. Lepine, J. G. Bisaillon, “Anaerobic Biodegradation of Pentachlorophenol in a Contaminated Soils Inoculated with a Methanogenic Consortium or with Desulfitobacterium frappiere strain PCP-1”, Applied Microbiological Biotechnology, Vol. 50, pp. 135~141, 1998.
139. Barbeau, C., l. Deschenes, D. Karamanev, Y. Comeau, R. Samson, “Bioremediation of Pentachlorophenol-Contaminated Soil by Bioremediation Using Activated Soil”, Applied Microbiological Biotechnology, Vol. 48, pp. 745~752, 1997.
140. 劉奇岳,「電動力-Fenton法現地處理受三氯乙烯及4-氯酚污染土壤之最佳操作條件探討」,國立中山大學環境工程研究所碩士論文,1999。
141. 行政院環保署環境檢驗所,「土壤中酸鹼值測定方法」,NIEA S410.60T,1995。
142. 行政院環保署環境檢驗所,「土壤水份含量測定方法-重量法」,NIEA S280.60T,1995。
143. ASTM, “Standard Test Method for Specific Gravity of Soils”, ASTM D854-83, 1983.
144. Nelson, D. W. and L. E. Sommers, “Total Carbon and Organic Matter”, in Handbook of Soil Mechanics, Vol. 2, Soil Testing, Chapter 29, pp. 539-579, Elsevier Scientific Publishing Co., New York, 1980.
145. Head, K. H., “Manual of Soil Laboratory Testing, Volume 1: Soil Classification and Compaction Tests”, Pentech Press Limited, Plymouth, Devon, p. 249, 1980.
146. 行政院環保署環境檢驗所,「土壤中陽離子交換容量-醋酸鈉法」,NIEA S202.60A,1995。
147. 「高級氧化程序在廢水處理上的應用」,工業污染防治技術手冊,第39冊,第47~48頁。
148. Metcalf and Eddy, “Wastewater Engineering: Treatment, Disposal, and Reuse”, 3rd Ed., McGraw-Hill, Inc., New York, p. 1045, 1991.
149. Sudoh, M., T. Kodera, K. Sakai, J. Q. Zhang, and K. Koide, “Oxidative Degradation of Aqueous Phenol Effluent with Electrogenerated Fenton’s Reagent”, Journal of Chemical Engineering of Japan, Vol. 19, No. 6, pp. 513~518, 1986.
150. 龍玉文,「電動力-Fenton法處理受酚與4-氯酚污染土壤之研究」,國立中山大學環境工程研究所碩士論文,1998。
151. Yeo, Y. B., J. T. Hamed, A.N. Alshaeabkeh, and R. J. Gale, “Removal of Cadmium(Ⅱ) from Saturated Kaolinite by the Application of Electrical Current”, Geotechnique, Vol. 44, No. 2, pp. 239~254, 1994.

電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內公開,校外永不公開 restricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.226.251.68
論文開放下載的時間是 校外不公開

Your IP address is 18.226.251.68
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code