Responsive image
博碩士論文 etd-0812108-141338 詳細資訊
Title page for etd-0812108-141338
論文名稱
Title
以水參與液相沉積法生長氟化氧化矽於非晶矽之研究
Water-assisted Liquid Phase Deposited Fluorinated Silicon Oxide on Amorphous Silicon
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
112
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-07-18
繳交日期
Date of Submission
2008-08-12
關鍵字
Keywords
非晶矽、氟氧化矽、氧化矽、液相沉積法、溫差法
Amorphous silicon, Fluorinated Silicon Oxide, Silicon oxide, LPD
統計
Statistics
本論文已被瀏覽 5678 次,被下載 1380
The thesis/dissertation has been browsed 5678 times, has been downloaded 1380 times.
中文摘要
探討氟化氧化矽薄膜於單晶矽基板和非晶矽上的物理和化學特性,且利用金氧半結構來分析電特性。另一方面利用不同氧體的熱退火來改善薄膜特性。
Abstract
In this study, SiO2-xFx films were deposited on Si and amorphous silicon, their physical and chemical properties were measured. An Al/ SiO2-xFx /Si and Al/ SiO2-xFx/a-Si/Si MOS structures were used for the electrical measurements. To improve the electrical properties, we investigated the characteristics of SiO2-xFx films after annealing in nitrogen and oxygen ambient.
We can find the leakage current density can be reduced to about 1.09× 10-6 A/cm2 and 1.03× 10-7 at -1 MV/cm and at 1 MV/cm after annealing in oxygen ambient. Although the leakage current is improved one order but the dielectric constant is increase.
目次 Table of Contents
CHAPTER 1 1
INTRODUCTION 1
1-1 Background 1
1-2 Liquid Crystal Drive Schemes 1
1-2.1 Passive Matrix 2
1-2.2 Active Matrix 2
1-3 Development of TFTLCD 3
1-4 Motivation of Low k Materials as Gate Oxide and Inter-metal Dielectrics 3
1-5 Mechanisms of LPD- SiO2-xFx 4
1-6 Growth Methods 5
1-7 Advantages of Liquid Phase Deposition 6
References 9
CHAPTER 2 12
EXPERIMENTS 12
2-1 Deposition System 12
2-2 Cleaning of Substrate 13
2-3 Preparation of Deposition Solution 14
2-4 Film Deposition 15
2-5 Improvements of Electrical Properties 15
2-5.1 Annealing LPD-SiO2-xFx films in N2 and O2 ambient 15
2-5.2 Motivation of the Film LPD-SiO2-xFx with PMA treatment 16
2-5.2.1 Aluminum metal cleaning processes 16
2-5.2.2 PMA procedure 16
2-6 Characteristics 16
2-6.1 Physical and Chemical Properties 16
2-6.2 Electrical Properties 18
Chapter 3 ……………………………………………………………………………25
Results and Discussion 25
PART I: LPD-SiO2-xFx films on Si substrate 26
3-1 LPD-SiO2-xFx on Si as a Function of DI water Volume 26
3-1.1 Deposition Rate of LPD-SiO2-xFx Films Prepared with Different DI water Volume 26
3-1.2 FE-SEM Views of TD-LPD-SiO2 Films 27
3-1.3 AFM Analysis of LPD-SiO2-xFx Films 28
3-1.4 XPS Analysis of LPD-SiO2-xFx Films 28
3-1.4.1 XPS Analysis for the F Content 29
3-1.5 SIMS Depth Profile of LPD-SiO2-xFx Films 29
3-1.6 FTIR Spectra of LPD-SiO2-xFx Films 29
3-1.7 Model for Deposition Mechanism 30
3-1.8 Leakage Current Densities of LPD-SiO2-xFx Films as a Function of DI Water volume 31
3-1.9 Capacitance-Voltage Measurements of LPD-SiO2-xFx Films as a function of DI Water Volume 32
3-1.10 Dielectric Constant of LPD-SiO2-xFx Film 33
3-2 Improvement of Electrical Characteristics by N2 and O2 Post-annealing 34
3-2.1 XRD Patterns of LPD-SiO2-xFx Films 35
3-2.2 Electric Characteristics of LPD-SiO2-xFx Films Prepared at Different Annealing Temperature in N2 Ambient for 1 Hour 35
3-2.3 Electric Characteristics of LPD-SiO2-xFx Films Prepared at Different Annealing Temperature in O2 Ambient for 1 Hour 37
3-2.4 Electric Characteristics of LPD-SiO2-xFx Films Prepared by Post-metallization Annealing (PMA) 39
3-2.4.1 Motivation of LPD-SiO2-xFx Films with PMA Treatment 39
3-2.4.2 J-E & C-V Characteristics of PMA Temperature on Si 41
3-2.5 Tentative Summary 42
PART II: LPD-SiO2-xFx films on a-Si/p-type Si substrate 43
3-3 LPD-SiO2-xFx on a-Si/p-type Si substrate as a Function of DI water Volume 43
3-3.1 Deposition Rate of LPD-SiO2-xFx Films Prepared with Different DI water Volume 43
3-3.2 FE-SEM Views of LPD-SiO2-xFx Films on a-Si/p-type Si 44
3-3.3 AFM Analysis of LPD-SiO2-xFx Films on a-Si/p-type Si 45
3-3.4 XPS Analysis of LPD-SiO2-xFx Films on a-Si/p-type Si 45
3-3.4.1 XPS Analysis for the F Content 46
3-3.5 SIMS Depth Profile of LPD-SiO2-xFx Films on a-Si/p-type Si 46
3-3.6 FTIR Spectra of LPD-SiO2-xFx Films on a-Si/p-type Si 46
3-3.7 Leakage Current Densities of LPD-SiO2-xFx Films as a Function of DI Water volume on a-Si/p-type Si 47
3-3.8 Capacitance-Voltage Measurements of LPD-SiO2-xFx Films as a function of DI Water Volume on a-Si/p-type Si 48
3-4 Improvement of Electrical Characteristics by N2 and O2 Post-annealing 48
3-4.1 XRD Patterns of LPD-SiO2-xFx Films on a-Si/p-type Si 48
3-4.2 Electric Characteristics of LPD-SiO2-xFx Films Prepared at Different Annealing Temperature in N2 Ambient for 1 Hour on a-Si/p-type Si 49
3-4.3 Electric Characteristics of LPD-SiO2-xFx Films Prepared at Different Annealing Temperature in O2 Ambient for 1 Hour on a-Si/p-type Si 51
3-4.4 Electric Characteristics of LPD-SiO2-xFx Films Prepared by Post-metallization Annealing (PMA) 53
3-4.4.1 J-E & C-V Characteristics of PMA Temperature on a-Si 53
3-4.5 Tentative Summary 54
References 91
Chapter 4….. 96
Conclusions 96
參考文獻 References
1
[1] T. Yamazaki, H. Kawakami, and H. hori, Color TFT liquid crystal displays, Chap.1, 1996. (SEMI Stand FPD Technology Group)
[2] T. Yamazaki, H. Kawakami, and H. hori, Color TFT liquid crystal displays, Chap.2, 1996. (SEMI Stand FPD Technology Group)
[3] M. Ikeda, M. Ogawa, K Suzuki. in Proc. Japan Display 498, 1989.
[4] J. H. Lan, J. Kanicki, “Planarized copper gate hydrogenated amorphous-silicon thin film transistors for AM-LCDs,” IEEE electron Device Lett, vol. 20, pp. 129-131, 1999.
[5] K. M. Chang, S. W. Wang, T. H. Yeh, C. H. Li, and J. J. Luo, “Leakage Performance and Breakdown Mechanism of Silicon-Rich Oxide and Fluorinated Oxide Prepared by Electron Cyclotron Resonance Chemical Vapor Deposition”, J. Electronchem. Soc., vol. 144, pp. 1754, 1997.
[6] Y. Nishioka, E. F. da Silva, Jr., Y. Wang, and T. P. Ma, “Dramatic Improvement of Hot-Electron-Induced Interface Degradation in MOS Structures Containing F or Cl in SiO2”, IEEE Electron Device Lett., vol. 9, pp. 38, 1988.
[7] E. F. Dasilva, Y. Nishioka, and T. P. Ma, “Radiation Response of MOS Capacitors Containing Fluorinated Oxides”, IEEE Trans. Nucl. Sci., vol. 34, pp. 1190, 1987.
[8] K. Inoue, M. Nakamura, M. Okuyama, and Y. Hamakawa, “Reduction of Interface State Density by F2 Treatment in a Metal-Oxide-Semiconductor Diode Prepared from a Photochemical Vapor-Deposited SiO2 Film”, Appl. Phys. Lett., vol. 55, pp. 2402, 1989.
[9 ]M. J. Shapiro, S. V. Nguyen, T. Matsuda, and D. Dobuzinsky, “CVD of Fluorosilicate Glass for ULSI Applications”, Thin Solid Films, vol. 270, pp. 503, 1995.
[10]S. W. Lim, Y. Shimogaki, Y. Nakano, K. Tada, and H. Komiyama, “Reduction Mechanism in the Dielectric Constant of Fluorine Doped Silicon Dioxide Film”, J. Electronchem. Soc., vol. 144, pp. 2531, 1997.
[11] T. Usami, K. Shimokawa, and M. Yoshimaru, “Low Dielectric Constant Interlayer Using Fluorine Doped Silicon Oxide”, Jpn. J. Appl. Phys., vol. 33, pp. 408, 1994.
[12] H. Miyajima, R. Katsumata, Y. Nakasaki, Y. Nishiyama, and N. Hayasaka, “Water-Absorption Properties of Fluorine Doped SiO2 Films Using Plasma Enhanced Chemical Vapor Deposition”, Jpn. J. Appl. Phys., vol. 35, pp. 6217, 1996.
[13] F. H. P. M. Habraken and A. E. T. Kuiper, “Silicon Nitride and Oxynitride Films”, Mater. Sci. and Eng. Rev., vol. 12, pp. 123, 1994.
[14] C. S. Lai, T. F. Lei, and C. L. Lee, “The Electrical Characteristics of Polysilicon Oxide Grown in Pure N2O”, IEEE Elcetron Device Lett., vol. 16, pp. 385, 1995.
[15] Z. Q. Yao, H. B. Harrison, S. Dimitrijev, and Y. T. Yeow, “The Electrical Properties of Sub 5nm Oxynitride Dielectrics Prepared in a Nitric-Oxide Ambient Using Rapid Thermal Processing”, IEEE Electron Device Lett., vol. 15, pp. 516, 1995.
[16] T. Hori, H. Iwasaki, and K. Tsuji, “Electrical and Physical Properties of Ultra-thin Reoxidized Nitrided Oxides Prepared by Rapid Thermal Processing”, IEEE Trans. Electron Devices, vol. 36, pp. 340, 1989.

[17] H. Nagayama, H. Honda, and H. Kamahara, “A New Process for Silica Coating,” J. Electrochem. Soc., vol. 135, Iss. 8, pp. 2013-2016, 1988.
[18] Shu-Ming Chang, “The Electrical Properties of Liquid-Phase
Deposited SiOF Films with Annealing Treatment”, 2003.
[19] H. Nagayama, H. Honda, and H. Kawahara, “A New Process for
Silica Coating,” J. Electronchem. Soc., vol. 135, pp. 2013-2016,
1988.
[20] A. Hishinuma, T. Goda, M. Kitaoka, S. Hayashi, and H. Kawahara,
“Formation of Silicon Dioxide Films in Acidic Solution,” Applied
Surface Sci., vol. 48, pp. 405-408, 1991.
[21] C. F. Yeh and C. L. Chen, “Bond-Structure Changes of Liquid-Phase
Deposited Oxide (SiO2-xFx) on N2 Annealing,” Appl. Phys. Lett., vol.66, pp. 938-940, 1995
3
[01] Jeng-Hua Wei and Si-Chen Lee, “The Structure Change of Liquid Phase Deposited Silicon Oxide by Water Dilution”, J. Electrochem. Soc., Vol. 144, No. 5, May 1997
[02] Y.S. Kim, M.Y. Sung, Y.H. Lee, B.K. Ju, and M.H. Oh, “The Influence of Surface Roughness on the Rlrctric Conduction Process in Amorphous Ta2O5 Thin Films”, J. Electrochemical Soc., vol. 146, pp. 3398-3402, 1999.
[03] Ching-Fa Yeh and Chun-Lin Chen, “Controlling Fluorine Concentration and Thermal Annealing Effect on Liquid-Phase Deposited SiO2-xFx Films”, J. Electrochem. Soc., Vol. 142, No. 10, October 1995
[04] C. F. Yeh, C. L. Chen, and G. H. Lin, “The Physicochemical Properties and Growth-Mechanism of Oxide (SiO2-xFx) by Liquid-Phase Deposition with H2O Addition Only”, J. Electrochem. Soc., vol. 141, pp. 3177, 1994
[05] K. M. Chang, S. W. Wang, T. H. Yeh, C. H. Li, and J. J. Luo, “Leakage Performance and Breakdown Mechanism of Silicon-Rich Oxide and Fluorinated Oxide Prepared by Electron Cyclotron Resonance Chemical Vapor Deposition”, J. Electronchem. Soc., vol. 144, pp. 1754, 1997.
[06] P. J. Wright and K. C. Saraswat, “The Effect of Fluorine in Silicon Dioxide Gate Dielectrics”, IEEE Trans. Electron Devices, vol. 36, pp. 879, 1989.
[07]E. Cartier, D. A. Buchanan, and G. J. Dunn,“Atomic Hydrogen-Induced Interface Degradation of Reoxidized-Nitrided Silicon Dioxide on Silicon”, Appl. Phys. Lett., vol. 64, pp. 901, 1994.
[08] W. S. Lu and J. G. Hwu, “Preparation of Fluorinated Gate Oxides by Liquid-Phase Deposition Following Rapid Thermal-Oxidation”, Appl. Phys. Lett., vol. 66, pp. 3322, 1995.
[09]W. J. Chang, M. P. Houng, and Y. H. Wang, “Trap Concentration Dependence on the Electrical Properties of Annealed Ultrathin Fluorinated Silicon Oxides”, Jpn. J. Appl. Phys., vol. 40, pp. 1300, 2001.
[10] G. Q. Lo, W. C. Ting, D. K. Shih, and D. L. Kwong, “Study of Interface State Generation in Thin Oxynitride Gate Dielectrics Under Hot-Electron Stressing”, Electron. Lett., vol. 25, pp. 1354, 1989.
.
[11] E.H. Nicollian, and J.R. Brews, “MOS Physics and Technology”, 2003.
[12] P. W. Lee, S. Mizuno, A. Verma, H. Tran, and Nguyen, “Dielectric Constant and Stability of Fluorine Doped Plasma-Enhanced Chemical Vapor Deposited SiO2 Thin Films”, J. Electrochem. Soc., vol. 143, pp. 2015, 1996.
[13] S. Lee and J. W. Park, “Effect of fluorine on moisture absorption and dielectric properties of SiOF films”, Materials Chemistry and Physics, vol. 53, pp. 150, 1998.
[14] Jia-Ming Yu, “Preparation of silicon titanium oxide based on hexafluorotitanic acid for next generation gate oxide”, 2004.
[15] Tsung-Shiun Wu, “High Dielectric Constant and Low Leakage Current TiO2 Thin Films on Silicon”, 2004.
[16] B. C. Kang, S. B. Lee, J. H. Boo, “Growth of TiO2 Thin Films on Si(100) Substrates Using Single Molecular Precursors by Metal Organic Chemical Vapor Deposition,” Surface and Coating Technology, vol. 131, pp. 88-92, 2000.
[17] S. Lee and J. W. Park, “Effect of Fluorine on moisture absorption amd dielectric properties of SiOF films,” Materials Chemistry and Physics, vol. 53, pp. 150-154, 1998.
[18] Ming-Kwei LEE, Chung-Min Shih, Shu-Ming Chang, Hong-Chi Wand and Jung-Jie Huang, “Characterization of thermally annealed fluorinated silicon dioxide films prepared by liquid phase deposition”, J. J. Appl. Phys., vol. 44, pp. L220-L223, 2005.
[19] V.L. Shannon ‘, M.Z. Karim, “Study of the material properties and suitability of plasma-deposited fluorine-doped silicon dioxides for low dielectric constant interlevel dielectrics”, Thin Solid Films 270 ( 1995) 498-502
[20] Jia-Ming Yu, “Preparation of silicon titanium oxide based on hexafluorotitanic acid for next generation gate oxide”, 2004.
[21] P. Czuprynski and O. Joubert, “X-ray photoelectron spectroscopy analyses of silicon dioxide contact holes etched in a magnetically enhanced reactive ion etching reactor,” J. Vac. Sci. Technol. B, vol. 16, no. 3, pp. 1051-1058, 1998.
[22] Jia-Ming Yu, “Preparation of silicon titanium oxide based on hexafluorotitanic acid for next generation gate oxide”, 2004.
[23] N. Rausch and E. P. Burte, Engineering, vol. 19, 725, 1992.
[24] W. D. Brown and W. W. Grannemann, “C-V Characteristics of Metal-Titanium Dioxide-Silicon Capacitors,” Solid-State Electron., vol. 21, pp. 837-846, 1978.
[25] D. M. Shang and W. Y. Ching, “Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite,” Phys. Rev. B, vol. 51, pp. 13023-13032, 1995.
[26] D. C. Gilmer, X. C. Wang, M. T. Hsieh, H. S. Kim, W. L. Glasfelter, and J. Yan, IEEE Trans. Electron Devices, vol. 44, pp. 104-109, 1997.
[27] P. Balk, in Proceedings of the Electrochemical Society Fall Meeting (Electrochemical Society, Buffalo, NY,1965), p.29.
[28] M. L. Reed and J. D. Plummer, “Chemistry of Si-SiO2¬ interface trap annealing”, J. Appl. Phys., 63, pp. 5776-5793, 1988.
[29] R. O. Lussow, “The Influence of Thermal SiO2 Surface Constitution on the Adherence of Photoresists”, 115, 660, 1968.
[30] http://www.gcsescience.com/a/r3.htm
[31] E. Cartier, J. H. Stathis, and D. A. Buchanan, “Passivation and depassivation of silicon dangling bounds at the Si/SiO2 interface by atomic hydrogen,” Appl. Phys. Lett., vol. 63, pp.1510-1512, 1993.
[32] E. H. Nicollian and J. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology, Chap. 15, Wiley, New York (1982).
[33] E. K. Badih and J. B. Richard, Introduction to VLSI Silicon Device Physics, Technology and Characterization, pp. 340-341, Kluwer Academic Publishers (1986).
[34] L. Do Thanh and P. Balk, “Elimination and Generation of Si-SiO2 Interface Traps by Low Temperature Hydrogen Annealing”, J. Electrochem. Soc., 135, pp.1797-1801, 1988.
[35] R. R. Razouk and B. E. Deal, “Dependence of Interface State Density on Silicon Thermal Oxidation Process Variables,” J. Electrochem. Soc., vol. 126, pp. 1573-1581, 1979.
[36] C. K. Jung, D. C. Lim, H. G. Jee, M. G. Park, S. J. Ku, K. S. Yu, B. Hong, S. B. Leea, and J. H. Booa, “Hydrogenated amorphous and crystalline SiC thin films grown by RF-PECVD and thermal MOCVD; comparative study of structural and optical properties,” Surf. Coat. Technol., vol. 171, pp. 46-50, 2003.
[37] H. D. Fuchs, M. Stutzman, M. S. Brandt, M. Rosenbauer, J. Weber, A. Breitschwerd, P. Deak, and M. Cardona, “Porous silicon and siloxene: Vibrational and structural properties,” Phys. Rev. B, vol. 48, pp. 8172-8189, 1993.
[38] M.G. Hussein, K. Wörhoff, C.G.H. Roeloffzen, L.T.H. Hilderink, R.M. de Ridder and A. Driessen, “Characterization of thermally treated PECVD SiON layers,” Department of Electrical Engineering and Applied Physics, University of Twente.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code