Responsive image
博碩士論文 etd-0812108-152345 詳細資訊
Title page for etd-0812108-152345
論文名稱
Title
以液相沈積法備製氟氮共摻雜二氧化鈦奈米顆粒及於染料敏化太陽電池之應用
Growth of N-F co-doped titania nanoparticle and applied on dye-sensitized solar cell
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
91
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-07-17
繳交日期
Date of Submission
2008-08-12
關鍵字
Keywords
液相沈積法、二氧化鈦、染料敏化太陽能電池
TiO2, LPD, DSSC
統計
Statistics
本論文已被瀏覽 5688 次,被下載 0
The thesis/dissertation has been browsed 5688 times, has been downloaded 0 times.
中文摘要
利用液相沉積法(LPD)沉積氟氮共摻雜之多孔性二氧化鈦奈米顆粒,一般未摻雜二氧化鈦的能階為3~3.2eV,相對到吸收光譜為紫外光380nm左右,但太陽光的能量只有6%在紫外光,而可見光佔了52%能量左右,由於成長出來的二氧化鈦主要是應用於光觸媒及太陽能電池,都希望可以提高對光能量的吸收,因此才在二氧化鈦中摻雜氟、氮,目的是為了調整二氧化鈦的光吸收邊界(optical absorption edge),目前摻雜的方法所能摻雜的雜質只有少數跟二氧化鈦產生鍵結因而成效不高,以液相沉積法透過六氟鈦銨及硼酸在40度下混合成長出三氟氧鈦銨,此前驅物當中充滿很多氟氮,經由鍛燒之後即可產生二氧化鈦並且透過ESCA分析所含的氟氮比,再應用於太陽能電池時就能觀察鍛燒溫度不同時所殘留及鍵結的氟氮對太陽能電池的效率。目前二氧化鈦的光吸收邊界可達藍光區域,將多孔性二氧化鈦應用於染料敏化太陽能電池陽極,目前的fill factor可達29%左右。
Abstract
Using liquid phase deposition (LPD) fluorine nitrogen altogether doping porous titanium dioxide nanoparticle, general has not doped the titanium dioxide to be able the step to be 3~3.2eV, is opposite to the absorption spectrum for ultraviolet ray 380nm about, but sunlight energy only then 6% in ultraviolet ray, but the visible light has occupied about 52% energy, because grows the titanium dioxide which comes out mainly is applies in the light catalyst and the solar cell, all hoped may enhance to the luminous energy absorption, therefore only then dopes the fluorine, the nitrogen in the titanium dioxide, the goal is in order to adjust the titanium dioxide the light to absorb the boundary (optical absorption edge), at present dopes the method can dope the impurity only then minority produces the key with the titanium dioxide to binding thus result not well, penetrates ammonium hexafluorotitanate and the boric acid by the liquid phase sedimentation mixes under 40 degrees grows ammonium oxofluorotitanate discoid crystal, in the middle of this forerunner fills the very many fluorine nitrogen, after annealing and then produces the titanium dioxide to penetrate the fluorine nitrogen which the ESCA analysis contains compared to, again applies in the solar cell when can observe the annealing temperature differently when remains the fluorine nitrogen which and the key ties to the solar cell efficiency. At present the titanium dioxide light absorbs the boundary to be possible to reach the blue light region, applies the porous titanium dioxide in the dye sensitization solar cell anode, present fill factor may reach about 29.6%.
目次 Table of Contents
Chapter 1 1
Introduction 1
1.1 Background 1
1.2 Structure of Dye Sensitized Solar Cell (DSSC) 2
1.3 Preparations of TiO2 6
1.4 Motivation 7
1.4.1 N-F codoped in TiO2 7
1.4.2 Reduce the series resistence 8
1.5 Basics of photovoltaic energy conversion 8
1.5.1 Solar irradiation and availability of solar electricity 8
1.5.2 Photovoltaic cell performance 10
Reference 21
Chapter 2 24
Experiment 24
2.1 LPD Deposition Procedures 24
2.1.1 Deposition System 24
2.1.2 Indium Tin Oxide(ITO) Substrate Cleaning Procedures 25
2.2 Preparation of Deposition Solution 25
2.2.1 Preparation of (NH4)2TiF6 Solution 26
2.2.2 Preparation of H3BO3 Solution 26
2.2.3 Preparation of Dye Solution 26
2.2.4 Preparation of Electrolyte Solution 27
2.2.5 Equipments 27
2.2.6 Physical and Chemical Properties 27
2.3 Preparation of TiO2 anode 29
2.3.1 Preparation of LPD TiO2 film 29
2.3.2 Preparation of sputtering TiO2 film. 29
2.3.3 Preparation of N-F co-doped TiO2 nanoparticle. 30
2.3.4 Preparation of double layer structure TiO2 anode. 30
2.4 Basic Mechanism 31
2.5 Fabrication of Solar Cell 32
Reference 38
Chapter 3 39
Results and discussion 39
3.1 Ammonium Oxotrifluorotitanate Discoid Crystal Prepared by Liquid-Phase Deposition 39
3.1.2 Growth Parameters 40
3.1.3 Characteristics of NH4TiOF3 discoid crystal 40
3.1.3.1 H3BO3/(NH4)2TiF6 ≥ 0.6 40
3.1.3.2 H3BO3/(NH4)2TiF6 < 0.6 41
3.2 Fluorine and Nitrogen Co-doped Nanocrystalline Anatase Phase Titanium Oxide Converted from Ammonium Oxotrifluorotitanate 42
3.2.2 Physical and Chemical Analyses of Nanocrystalline Anatase Phase TiO2 Converted from NH4TiOF3 43
3.2.3 The roles of F and N in Nanocrystalline Anatase Phase TiO2 43
3.2.4 Visible Photocatalytic Activity 48
3.3 Performance and applications of the dye-sensitized solar cells 48
3.3.1 The Morphologies and I-V characteristic of single structure TiO2 anode 48
3.3.2 The Morphologies and I-V characteristic of double layer structure TiO2 anode 49
Reference 74
Chapter 4 78
Conclusions 78
參考文獻 References
Chapter 1
[1] B. O’Regan, M. Gr‥atzel, Nature 353 (1991) 737.
[2] M.K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry, E. Muller, P. Liska, N. Vlachopoulos, M. Gr‥atzel, J. Am. Chem. Soc. 115 (1993) 6382.
[3] M. Gr‥atzel, Nature 414(2001)
[4] Di Li, Hajime Haneda , Shunichi Hishita , and Naoki Ohashi ,Chem. Mater. 2005, 17, 2596-2602
[5] Prog.Photovolt:Res.Appl. 2008 16: 61-67
[6] G. San Vicente, A. Morales, and M. T. Gutierrez, “Preparation and characterization of sol-gel TiO2 antireflective coatings for silicon,” Thin Solid Films, vol. 391, pp. 133-137, 2001.
[7] J. V. Grahn, M. Linder, and E. Fredriksson, “In situ growth of evaporated TiO2 thin films using oxygen radicals: Effect of deposition temperature,” J. Vac. Sci. Technol. A, vol. 16, no. 4, pp. 2495-2500, 1998.
[8] R. Dannenberg and P. Greene, “Reactive sputter deposition of titanium dioxide,” Thin Solid Films, vol. 360, pp. 122-127, 2000.
[9] K. S. Yeung and Y. W. Lam, “Simple chemical vapor deposition method for depositing thin TiO2 films,” Thin Solid Films, vol. 109, no. 2, pp. 169-178, 1983.
[10] G. A. Battiston, R. Gerbasi, A. Gregori, M. Porchia, S. Cattarin, and G. A. Rizzi, “PECVD of amorphous TiO2 thin films: effect of growth temperature and plasma gas composition,” Thin Solid Films, vol. 371, pp. 126-131, 2000.
[11] H. S. Kim, D. C. Gilmer, S. A. Campbell, and D. L. Polla, “Titanium dioxide films prepared by photo-induced sol-gel processing using 172 nm excimer lamps,” Appl. Phys. Lett., vol. 69, no. 25, pp. 3860-3862, 1996.
[12] Y. Gao and S. A. Chambers, “MEB growth and characterization of TiO2 and Nb-doped TiO2 films,” Mater. Lett., vol. 26, no. 4-5, pp. 217-221, 1996.
[13] H. Nagayama, H. Honda, and H. Kawahara, “A new process for silica coating ,” J. Electrochem. Soc., vol. 135, pp. 2013-2016, 1988.
[14] C. F. Yeh, S. S. Lin, and T. Y. Hong, “Low-temperature processed MOSFETs with liquid phase deposited SiO2-xFx as gate insulator,” IEEE Electron Device Lett., vol. 16, no. 7, pp. 316-318, 1995.
[15] C. F. Yeh, S. S. Lin, C. L. Chen, and Y. C. Yang, “Novel technique for SiO2 formed by liquid-phase deposition for low-temperature processed polysilicon TFT,” IEEE Electron Device Lett., vol. 14, no. 8, pp. 403-405, 1993.
[16] S. Deki, Y. Aoi, O. Hiroi, and A. Kajinami, “Titanium (IV) oxide thin films prepared from aqueous solution,” Chem. Lett., vol. 17, pp. 433-434, 1996.
[17] H. Kishimoto, K. Takahama, N. Hashimoto, Y. Aoi, and S. Deki, “Photocatalytic activity of titanium oxide prepared by liquid phase deposition (LPD),” J. Mater. Chem., vol. 8, no. 9, pp. 2019-2024, 1998.
[18] N. Serpone and D. Lawless, “Photoconductivity, and photocatalytic studies of TiO2 colloids,” Langmuir, vol. 10, pp. 643-652, 1994.
[19] S. W. Ryu, E. J. Kim, S. K. Ko, and S. H. Hahn, “Effect of calcination on the structural and optical properties of M/TiO2 thin films by RF magnetron co-sputtering,“ Mater. Lett., vol. 58, pp. 582-587, 2004.
[20] L. Palmisano, V. Augugliaro, and A. Sclafani, “Activity of chromium-ion-doped titania for the dinitrogen photoreduction to ammonia and for the phenol photodegradation,” J. Phys. Chem., vol. 92, pp. 6710-6713, 1988.
[21] M. Gratxel and R. F. Howe, “Electron paramagnetic resonance studies of doped TiO2 colloids,” J. Phys. Chem., vol. 94, pp. 2566-2572, 1990.
[22] http://www.pv.unsw.edu.au/am1.5.html
[23] The regeneration and cathode reactions involving two electrons are actually composed of sequences of partial reactions (see e.g. Fisher et al. (2000) for the regeneration partial reactions).
[24] S.M. Sze. Semiconductor Devices Physics and Technology .second Edition
Chapter 2
[1] S. Deki, T. Aoi, O. iroi, and A. Kajinamei, “A novel wet process for the preparation of vanadium dioxide thin film,” J. Mater. Chem., vol. 32, PP. 4269-4273,1997
[2] B. D. Cullity, S. R. Stock, in Elements of X-ray diffraction, (Prentice Hall, Third Edition 2001), Chap. 5, p. 170.
[3] J. Li, M. Tammer, F. Kremer, A. Komp, and H. Finkelmann, “Strain-induced reorientation and mobility in nematic liquid-crystalline elastomers as studied by time-resolved FTIR spectroscopy,” Eur. Phys. J. E, vol. 17, no. 4, pp. 423-428, 2005.
[4] R. Brause, H. M&#246;ltgen, and K. Kleinermanns, &#8222;Characterization of laser-ablated and chemically reduced silver colloids in aqueous solution by UV/VIS spectroscopy and STM/SEM microscopy,” Appl. Phys. B, vol. 75, no. 6-7, pp. 711-716, 2002.
[5] C. H. Chen, E. M. Kelder, and J. Schoonman, “Electrostatic sol-spray deposition (ESSD) and characterization of nanostructured TiO2 thin films,” Thin Solid Films, vol. 342, pp. 35-41, 1999.
Chapter 3
[1] I. Moriguchi, K. Sonoda, K. Matuso, S. Kagawa, and T. Yasutake, “Oriented growth of thin films of titanium oxyfluoride at the interface of an air/water monolayer,” Chem. Commun., vol. 15, pp. 1344-1345, 2001.
[2] H. Nagayama, H. Honda, and H. Kawahara, “Preparation of photocatalyst doped TiO2 with liquid phase deposition,” J. Electrochem. Soc., vol. 359, pp. 2013-2016, 1988.
[3] S. Deki, T. Aoi, O. Hiroi, and A. Kajinami, “A Novel wet process for the preparation of vanadium dioxide thin film,” J. Mater. Chem., vol. 32, pp. 4269-4273, 1997.
[4] R. H. Schmitt, H. L. Glove, and R. D. Brown, “The equivalent conductance of the hexafluorocomplexes of group IV (Si, Ge, Sn, Ti, Zr, Hf),” J. Am. Chem. Soc., vol. 82, no. 20, pp. 5292-5295, 1960.
[5] C. A. Wamser, “Equilibria in the System Boron Trifluoride-Water at 25°,” J. Am. Chem. Soc., vol. 73, no. 1, pp. 409-416, 1951.
[6] N. M. Laptash, I. G. Maslennikova, and T. A. Kaidalova, “Ammonium oxofluorotitanates ,” J. Fluor. Chem., vol. 99, no. 2, pp. 133-137, 1999.
[7] N. M. Laptash, E. B. Merkulov, and I. G. Maslennikova, “Thermal Behaviour of Ammonium Oxofluorotitanates(IV),” J. Therm. Anal. Calorim., vol. 63, no. 1, pp. 197-204, 2001.
[8] I. N. Flerov, V. D. Fokina, F. B. Asya, and N. M. Laptash, “Phase transitions in perovskite-like oxyfluorides (NH4)3WO3F3 and (NH4)3TiOF5,” Solid State Sci., vol. 6, no. 4, pp. 367-370, 2004.
[9] C. M .Shih, Ph. D. theory, Dpt. of EE, National Sun Yat-sen University, Kaoshiung, Taiwan, 2005.
[10] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and T. Taga, “Visible-light photocatalysis in nitrogen-doped titanium oxides,” Science, vol. 293, pp. 269-272, 2001.
[11] I. G. Maslennikova, N. M. Laptash, T. A. Kaidalova, and V. Y. Kavun, “Volatile ammonium fluorotitanate,” Spectroscopy Letters, vol. 34, no. 6, pp. 775-781, 2001.
[12] J. C. Yu, J. Yu, L. Zhang, and W. Ho, “Enhancing effects of water content and ultrasonic irradiation on the photocatalytic activity of nano-sized TiO2 powders,” J. Photochem. Photobiol. A-Chem., vol. 148, no. 1-3, pp. 263-271, 2002.
[13] D. Li, H. Haneda, S. Hishita, and N. Ohashi, “Visible-light-driven N-F-Codoped TiO2 photocatalysts. 1. synthesis by spray pyrolysis and surface characterization,” Chem. Mater., vol. 17, no. 10, pp. 2588-2595, 2005.
[14] D. Li, H. Haneda, S. Hishita, N. Ohashi, and N. K. Labhsetwar, “Fluorine-doped TiO2 powders prepared by spray pyrolysis and their improved photocatalytic activity for decomposition of gas-phase acetaldehyde,” J. Fluorine Chem., vol. 126, pp. 69-77, 2005.
[15] D. Li, H. Haneda, S. Hishita, and N. Ohashi, “Visible-light-driven N-F-Codoped TiO2 photocatalysts. 2. optical characterization, photocatalysis, and potential application to air purification,” Chem. Mater., vol. 17, no. 10, pp. 2596-2602, 2005.
[16] B. D. Cullity and S. R. Stock, in Elements of X-ray diffraction, (Prentice Hall, Third Edition 2001), Chap. 5, p. 170.
[17] J.C. Yu, J.G. Yu,W.K. Ho, Z.T. Jiang, L.Z. Zhang, Chem. Mater. 14 (2002) 3808–3816.
[18] D.G Huang , S.J Liao , J.M Liu , Z. Dang , L. Petrik , Journal of Photochemistry and Photobiology A : Chemistry 184 (2006) 282-288
[19] C. Minero, G. Mariella, V. Maurino, D. Vione, E. Pelizzetti, Langmuir 16 (2000) 8694–8972.
[20] C. Minero, G. Mariella, V. Maurino, E. Pelizzetti, Langmuir 16 (2000) 2636–2641.
[21] O. Diwald, T. L. Thompson, T. Zubkov, E. G. Goralski, S. D. Walck, and J. T. Yates, “Photochemical activity of nitrogen-doped rutile TiO2 (110) in visible light,“ J. Phys. Chem. B, vol. 108, no. 19, pp. 6004-6008, 2004.
[22] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293 (2001) 269–271.
[23] T. Morikawa, R. Asahi, T. Ohwaki, K. Aoki, Y. Taga, Jpn. J. Appl. Phys. 40 (2001) 561–563.
[24] D. Li, N. Ohashi, H. Hishita, T Kolodiazhnyi, H. Haneda, Solid state chemistry 178 (2005) 3293-3302
[25] R. Sanjines, H. Tang, H. Berger, F. Gozzo, G. Margaritondo, F. L′evy, J. Appl. Phys. 75 (1994) 2945–2951.
[26] Y. Su, X. Zhang, M. Zhou, S. Han , L. Lei, J. Photochemistry of Photobiology A :Chemistry 194 (2008) 152-160
[27] Z.L. Liu, B. Guo, L. Hong, H.X. Jiang, J. Phys. Chem. Solids 66 (2005) 161–167.
[28] A. Bensalem, F. Bozon-Verduraz, M. Delamar, G. Bugli, Appl. Catal. A: Gen. 121 (1995) 81–93.
[29] Cahen et al,. ”Nature of Photovoltaic Action in Dy-Sensitized Solar Cells” J.Phys. Chem. B 2000(104) 2053-2053
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.145.94.251
論文開放下載的時間是 校外不公開

Your IP address is 3.145.94.251
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code