Responsive image
博碩士論文 etd-0812108-155158 詳細資訊
Title page for etd-0812108-155158
論文名稱
Title
以液相沉積法與濺鍍法備製氧化鋅薄膜之特性分析
Characterization of Zinc Oxide Thin Films Prepared by Liquid Phase Deposition and RF Sputtering
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
79
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-07-17
繳交日期
Date of Submission
2008-08-12
關鍵字
Keywords
薄膜、氧化鋅、液相沉積法、濺鍍法
LPD, Sputtering, ZnO, Thin Film
統計
Statistics
本論文已被瀏覽 5631 次,被下載 0
The thesis/dissertation has been browsed 5631 times, has been downloaded 0 times.
中文摘要
透明導電薄膜(TCO)具有低電阻率、高光穿透率的特性,現今被廣泛應用在各類顯示器面板上,作為透明電極。目前最常見的透明電極材料為氧化銦錫(ITO),
銦屬於稀有元素並有毒性,且ITO 在高溫下不穩定,因此近年來有許多研究正在尋找適合取代ITO 的材料,而氧化鋅摻鋁(AZO)同樣具有低電阻率及高穿透率的特性,是適合的材料之ㄧ。
本研究選用AZO 與ITO 兩種靶材,利用成長透明導電薄膜最常使用的方法,即濺鍍法來分別濺鍍AZO 與ITO 薄膜於玻璃基板上,再個別做特性分析。除此之外,因為液相沉積法具有製程簡便、低成本並可大面積生產的優點,故本研究同時利用液相沉積法成長氧化鋅薄膜於玻璃基板上,並摻入鋁以增加其導電性。
Abstract
Transparent Conductive Oxide thin films (TCO) with low resistivity and high light transmission act as transparent electrode for many kinds of display panel. At present, Indium Tin Oxide (ITO) is common transparent electrode material. Because Indium is classified rare element, and it has toxicity. Moreover ITO is unstable in high temperature. Recent years many researches are searching adaptive materials to replace ITO. Al doped ZnO (AZO) has same characteristics of low resistivity and high light transmission, it is one of the adaptive materials.
In this study, we choice AZO and ITO target. Sputtering is a common method to deposition TCO. We sputtered the AZO film and ITO film on glass substrate and measured the characteristics respectively. In addition, because Liquid Phase Deposition (LPD) has advantages of simple process, low cost and large amount of wafers can be used. Therefore, in this study we growth ZnO thin film on glass substrate simultaneously, and doped Aluminum to increase conductivity.
目次 Table of Contents
Chapter 1 1
Introduction 1
1.1 Introduction of Transparent Conductive Oxide thin films (TCO) 1
1.2 The reason to choose ZnO 5
1.3 Background of Zinc Oxide (ZnO) 5
1.4 The reason to choose Al in doping element 6
1.5 The Application of Zinc Oxide 7
1.6 The Application of Indium Tin Oxide (ITO) 7
1.7 Growth mechanism in LPD-ZnO 8
1.8 Motivation 8
1.9 Advantages of LPD 9
1.10 Advantages of Sputtering 9
Reference 13
Chapter 2 16
Experiments 16
2.1 Zinc oxide prepared by LPD 16
2.1.1 Liquid phase deposition system 16
2.1.2 Using liquid phase deposition 16
2.2 Deposition procedures 17
2.2.1 Cleaning Procedures for Glass substrates 17
2.3 Preparation of Deposition Solution 17
2.3.1 Preparation of Zn(NO3)2 Solution 17
2.3.2 Preparation of C6H12N4 Solution 18
2.3.3 Preparation of HNO3 Solution 18
2.4 Growth Procedure 18
2.5 Basic Mechanism 19
2.6 Equipments 19
2.7 Al doped Zinc Oxide and Indium Tin Oxide growth by sputtering 20
2.7.1 Sputtering Technique 20
2.8 Characteristics 21
2.8.1 Physical properties 21
2.8.2 Chemical properties 22
2.8.3 Electrical measurements 22
2.8.4 Optical properties 22
Reference 27
Chapter 3 28
Result and Discussion 28
3.1 Electronic measurement 28
3.1.1 The RF power input influence of the electronic properties 28
3.1.2 The substrate temperature influence of the electronic properties 28
3.1.3 The thermal treatment temperature and environment influence of the electronic properties 29
3.2 The change of the film thickness 30
3.2.1 The different RF power input influence of the film thickness 30
3.2.2 The different substrate temperature influence of the film thickness 31
3.2.3 The different working pressures influence of the film thickness 31
3.3 The structure analysis 31
3.3.1 The RF power input influence of the structure 32
3.3.2 The deposition time influence to the film structure 32
3.3.3 The thermal treatment temperature influence to the film structure 32
3.4 Surface morphology analysis 33
3.4.1 The RF power input influence to the surface morphology 33
3.4.2 The substrate temperature influence to the surface morphology 33
3.4.3 The thermal treatment temperature influence to the surface morphology 33
3.4.4 The thermal treatment environment influence to the surface morphology 34
3.5 The optical properties measurement 34
3.5.1 The RF power input influence to the optical properties 34
3.5.2 The substrate temperature influence to the optical properties 34
3.6 The influence of the deposition rate 35
3.6.1 The RF power input effect on the deposition rate 35
3.7 Physical and chemical analyses of LPD-ZnO thin films 35
Reference 64
Chapter 4 65
Conclusion 65
參考文獻 References
Chapter 1
[1] 李玉華,“透明導電膜及其應用”, 科儀新知, 12卷第一期, (79), 94-102
[2] J. L.Vossen, “ Transparent Conducting Films ”, Physics of Thin Films, 9(1977),1-64
[3] M. S. Wu, A. Azuma, T. Shiosaki, A. Kawabata, “ Low-loss ZnO Optical Waveguides for SAW-AO applications ”IEEE Trans. Ultrasonics, 36(1989), 442-445
[4] Walter Water and Sheng-Yuan Chu, “ Physical and structure Properties of ZnO Sputtered Films ”, Materials Letters, 55(2002), 67-72
[5] Y.Yoshino, T. Makino, Y. Katayama and T. Hata, “ Optimization of Zinc Oxide Thin Films by Radio Frequency Sputtering ”, Vacuum, 59(2000), 538-545
[6] Yasuhiro Igasaki and Hiromi Saito, “ The Effects of Zinc Diffusion on The Electrical and Optical Properties of ZnO : Al Films Prepared by RF Reactive Sputtering ”, Thin Solid Films, 199(1991), 223-230
[7] KOMARU T, Kanagawa, SHIMIZU S, Kanagawa, KANBE M, MAEDA Y, Kanagawa, KAMIYA T, Kanagawa, FORTMANN C M, Kanagawa, SHIMIZU I , Kanagawa, “Optimazation of Transparent Conductive Oxide for Improved Resistance to Reactive and/or High Temperature Optoelectronic Device Processing”, Jpn. J. Appl. Phys. Part , 38(1999), 5796Ⅰ-5804
[8] L. Davis, Thin Solid Films, 236 (1993) 1-5.
[9] H. lida, T. Mishuku, A. lto and K. Kato, Solar Energy Materials, 17
(1988) 407-423.
[10] M. D. Giulio, G. Micocci, A. Serra, A. Tepore, R. Rell and P. Siciliano, Sensors and Actuators, B 24-25(1995) 465-478.
[11] V. Srikant and D.R.Clarke, J. Appl. Phys.,83 (1998) 5447-5451.
[12] 謝勝輝,“利用反應式濺鍍法成長氧化鋅薄膜之研究”,國立中山大學材料所(2004)。
[13] S .J. Pearton, D. P. Norton, K. Ip, Y.W. Heo, and T. Steiner. ”Recent progress in processing and properties of ZnO,” Propress in materials science, vol. 50, pp. 294-340, 2005.
[14] R. F. Service, “Will UV lasers beat the blues?,” Science, vol. 276, pp. 895-895, 1997.
[15] B. J. Ingram, G. B. Gonzalez, D. R. Kammler, M. I. Bertoni, and T. O. Mason, “Chemical and structural factors governing transparent
[16] S. C. Minne, S. R. Manalis, and C. F. Quate, “Parallel atomic force microscopy using cantilevers with integrated piezoresistive sensors and integrated piezoelectric actuators,” Appl. Phys. Lett., vol. 67, pp. 3918-3920, 1995.
[17] W. I. Park, D. H. Kim, S. W. Jung, and G. C. Yia, “Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods,” Appl. Phys. Lett., vol. 80, pp. 4232-4234, 2002.
[18] Y. B. Li, T. Bando, T. Sato, and K. Kurashima, “ZnO nanobelts grown on Si substrate”Appl. Phys. Lett., vol 81, pp 144-146, 2002.
[19] B. D. Tao, Y. F. Chan, and N. Wang, “Formation of ZnO nanostructures by a simple way of thermal evaporation,” Appl. Phys. Lett., vol. 81, pp. 757-759, 2002.
[20] X. Y. Kong and Z. L. Wang, ” Spontaneous polarization-induced
nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts,
” Nano Lett., vol. 3, pp. 1625-1631, 2003.
[21] L. Vayssieres, “Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions,” Adv. Mater., vol. 15, pp. 464-466, 2003.
[22] I. Shalish, H. Temkin, and V. Narayanamurti, “Size-dependent surface luminescence in ZnO nanowires,” Phys. Rev. B, vol. 69, pp. 245401-4, 2004.
[23] S. M. Sze, Semiconductor devices physics and technology 2nd edition.
[24] K.Tsukuma, T.Akiyama, and H.Imai, J. Non-Crys. Solids, 210, pp.48, (1997).
[25] Sophie Peulon and Daniel Lincot, “Mechanistic study of cathodic electrodeposition of zinc oxide and zinc hydroxychloride films from oxygenated aqueous zinc chloride solutions,” J. Electrochem. Soc., vol. 145, pp. 864-874, 1998.
[26] H. Zhang, D. Yang, Y. Ji, X. Ma, J. Xu, and D. Que, ” Low temperature synthesis of flowerlike ZnO nanostructures by cetyltrimethylammonium bromide-assisted hydrothermal process,” J. Phys. Chem. B, vol. 108, pp. 3955-3958, 2004.
[27] X. Gao, X. Li, and W. Yu, “Flowerlike ZnO nanostructures via hexamethylenetetramine-assisted thermolysis of zinc-ethylenediamine complex,” J. Phys. Chem. B., vol. 109, pp. 1155-1161, 2005.

Chapter 2
[1] L. Vayssieres, “Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions,” Adv. Mater., vol. 15, pp. 464-466, 2003.
[2] H. Zhang, D. Yang, Y. Ji, X. Ma, J. Xu, and D. Que, ” Low temperature synthesis of flowerlike ZnO nanostructures by cetyltrimethylammonium bromide-assisted hydrothermal process,” J. Phys. Chem. B, vol. 108, pp. 3955-3958, 2004.
[3] X. Gao, X. Li, and W. Yu, “Flowerlike ZnO nanostructures via hexamethylenetetramine-assisted thermolysis of zinc-ethylenediamine complex,” J. Phys. Chem. B., vol. 109, pp. 1155-1161, 2005.

Chapter 3
[1] T. Minami, H. Sato, K. Ohashi, T. Tomofuji and S. Takata, “Conduction mechanism of highly conductive and transparent zinc oxide thin films prepared by magnetron sputtering”, J. Cryst. Growth 117 (1992) 370.
[2] K. Tominaga, M. Kataoka, H. Manabe, T. Ueda and I. Mori, “Transparent ZnO:Al films prepared by co-sputtering of ZnO:Al with either a Zn or an Al target”, Thin Solid Films 290/291 (1996) 84.
[3] L. J. van der Pauw, “A method of measuring specific resistivity and Hall effect of discs of arbitrary shape”, Philips Research Reports 13 (1985).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.14.6.194
論文開放下載的時間是 校外不公開

Your IP address is 3.14.6.194
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code