Responsive image
博碩士論文 etd-0812108-225424 詳細資訊
Title page for etd-0812108-225424
論文名稱
Title
應用改良型安時累計法於鉛酸電池之電量及健康狀態估測
An Enhanced State-of-Charge and State-of-Health Estimation Method Based on Ampere-Hour Counting for Lead-Acid Batteries
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
53
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-07-25
繳交日期
Date of Submission
2008-08-12
關鍵字
Keywords
健康狀態、電量狀態、鉛酸電池、放電深度、安時累計法
lead-acid batteries, state-of-charge (SOC), depth of discharge (DOD), ampere-hour counting, state-of-health (SOH)
統計
Statistics
本論文已被瀏覽 5693 次,被下載 0
The thesis/dissertation has been browsed 5693 times, has been downloaded 0 times.
中文摘要
本文針對鉛酸電池,提出改良型安時累計法,估測電量狀態。此方法利用放電深度作為估測健康狀態之準則,發展能同時估測電量及健康狀態之估測方法。不同的放電電流不但會造成不同程度損耗,而且以較大電流放電時,即使已經放至截止電壓,但內部仍有剩餘電量未被釋出。有鑒於此,將上述兩個因素加入評估考量,並利用電池放電終了時之最大可釋出電量再次評估健康狀態,以提升估測剩餘電量的準確度。最後,透過實驗測試模擬實際操作環境,根據實驗結果得知最大估測誤差小於6 %。
Abstract
This thesis proposes an enhanced ampere-hour counting method based on the depth-of-discharge (DOD) to estimate the state-of-charge (SOC) and state-of-health (SOH) for lead-acid batteries. Not only the losses at different discharging currents, but also the releasable capacity at the exhausted state caused by the larger discharging current are considered and compensated. Furthermore, the SOH is revaluated at the exhausted state by the maximum releasable capacity, consequently leading to more accurate SOC estimation. Through the experiments that emulate practical operations, the experimental results reveal that the maximum error is less than 6 %.
目次 Table of Contents
中文摘要 I
英文摘要 II
目錄 III
圖表目錄 V
第一章 緒論 1
1-1 研究背景 1
1-2 研究動機與目的 2
1-3 論文大綱 4
第二章 鉛酸電池電量與老化估測技術 5
2-1 鉛酸電池構造與化學原理 5
2-2 電池的DOD、SOC與SOH之定義 6
2-3 影響鉛酸電池SOH的因素 7
2-4 電池SOC與SOH估測技術 8
2-5 實驗規劃 15
第三章 鉛酸電池電量估測及健康狀態評估 17
3-1 鉛酸電池充電特性 17
3-2 鉛酸電池放電特性 18
3-3 改良型安時累計法 24
第四章 電池電量與健康狀態估測之驗證實驗 28
4-1 SOC及SOH估測之驗證實驗 28
4-2 定電流之驗證實驗 29
4-3 兩段式電流之驗證實驗 32
4-4 隨機電流之驗證實驗 35
第五章 結論與未來研究方向 40
參考文獻 42
參考文獻 References
[1] H. Oman, “Battery Developments that Will Make Electric Vehicles Practical,” in Proc. IEEE AESM’00, August 2000, vol. 1, no. 8, pp.11-21.
[2] V. Pop, H. J. Bergveld, P. H. L. Notten, and P. P. L. Regtien, “Smart and Accurate State-of-Charge Indication in Portable Applications,” in Proc. IEEE PEDS’06, January 2006, vol. 1, pp. 262-267.
[3] A. Affanni, A. Bellini, G. Franceschini, P. Guglielmi, and C. Tassoni, “Battery Choice and Management for New-Generation Electric Vehicles,” IEEE Trans. Ind. Elec., vol. 52, no.5, pp 1343-1349, October 2005.
[4] R. Spotnitz, “Advanced EV and HEV Batteries,” in Proc. IEEE VPP’05, September 2005, pp 334-337.
[5] P. Sabine, P. Marion, and A. Jossen, “Methods for State-of-Charge Determination and their Applications,” J. Power Sources, vol. 96, no. 1, pp. 113-120, June 2001.
[6] S. Pang, J. Farrell, D. Jie, and M. Barth, “Battery State-of-Charge Estimation,” in Proc. IEEE ACC’01, June 2001, vol. 2, pp. 1644-1649.
[7] V. Pop, H. J. Bergveld, P. H. L. Notten, and P. P. Regtien, “State-of-Charge Indication in Portable Applications,” in Proc. IEEE ISIE’05, June 2005, vol. 3, pp. 1007-1012.
[8] C. S. Moo, K. S. Ng, Y. P. Chen, and Y. C. Hsieh, “State-of-Charge Estimation with Open-Circuit-Voltage for Lead-Acid Batteries,” in Proc. IEEE PCC’07, April 2007, pp. 758-762.
[9] M. Coleman, C. K. Lee, and W. G. Hurley “State-of-Health Determination Two Pulse Load Test for a VRLA Battery,” in Proc. IEEE PESC’06, June 2006, vol. 2, pp. 1-6.
[10] 陳怡萍,“鉛酸與鋰離子蓄電池之電量估測”,國立中山大學電機工程研究所碩士論文,2007年6月。
[11] M. Coleman, C. K. Lee, C. Zhu, and W. G. Hurley, “State-of-Charge Determination from EMF Voltage Estimation Using Impedance, Terminal Voltage, and Current for Lead-Acid and Lithium-Ion Batteries,” IEEE Trans. Ind. Elec., vol. 54, no. 5, pp. 2550-2557, October 2007.
[12] M. Mclntyre, T. Burg, D. Dawson, and B. Xian, “Adaptive State-of-Charge (SOC) Estimator for a Battery,” in Proc. IEEE ACC’06, June 2006, pp. 262-267.
[13] C. C. Hua, T. Y. Tasi, C. W. Chuang, and W. B. Shr, “Design and Implementation of a Residual Capacity Estimator for Lead-Acid Batteries,” in Proc. ICIEA’07, May 2007, pp. 2018-2023.
[14] S. Sato and A. Kawamura, “A New Estimation Method of State of Charge Using Terminal Voltage and Internal Resistance for Lead-Acid Battery,” in Proc. IEEE PCC’02, April 2002, vol. 2, pp. 565-570.
[15] F. Huet, R. P. Nogueira, P. Lailler, and L. Torcheux, “Investigation of the High-Frequency Resistance of a Lead-Acid Battery,” J. Power Sources, vol. 158, no. 2, pp. 1012-1018, August 2006.
[16] F. Pei, K. Zhao, Y. Luo, and X. Huang, “Battery Variable Current-Discharge Resistance Characteristics and State-of-Charge Estimation of Electric Vehicle,” in Proc. IEEE WCICA’06, June 2006, vol. 2, pp. 8314-8318.
[17] A. Delaille, M. Perrin, F. Huet, and L. Hernout, “Study of the Coup De Fouet of Lead-Acid Cells as a Function of their State-of-Charge and State-of-Health,” J. Power Sources, vol. 158, no. 2, pp 1019-1028, August 2006.
[18] P. E. Pascoe and A. H. Anbuky, “Estimation of VRLS Battery Capacity Using the Analysis of the Coup De Fouet Region,” in Proc. IEEE INTELEC’99, October 1999, pp. 114-122.
[19] P. E. Pascoe and A. H. Anbuky, “Standby Power System VRLA Battery Reserve Life Estimation Scheme,” IEEE Trans. Eng. Con., vol. 20, no. 4, pp. 887-895, December 2005.
[20] R. Rynkiewicz, “Discharge and Charge Modeling of Lead Acid Batteries,” in Proc. IEEE APEC’99, pp. 707-710.
[21] D. Doerffel and S. A. Sharkh, “A Critical Review of Using the Peukert Equation for Determining the Remaining Capacity of Lead-Acid and Lithium-Iion Batteries,” J. Power Sources, vol. 155, no. 2, pp. 395-400, April 2006.
[22] M. Yoshifumi, Y. Sou, S. H. Lee, and M. Naoki, “On-Line Detection of State-of-Charge in Lead Acid Battery Using Both Neural Network and On-Line Identication,” in Proc. IEEE IECON’06, November 2006, pp. 3379-3384.
[23] D. Berndt, “A Look back at Forty Years of Lead-Acid Battery Development a Survey Especially Regarding Stationary Applications,” in Proc. IEEE INTELEC’05, September 2005, pp. 269-275.
[24] D. Linden and T. B. Reddy, Handbook of Batteries, 3rd ed. New York: McGraw-Hill, 2001.
[25] B. K. Mahato, “Mechanism of Capacity Degradation of a Lead-Acid Battery,” in Proc. Battery Conference on Applications and Advances, January 1991, pp. 57-65.
[26] R. J. Ball, R. Kurian, R. Evans, and R. Stevens, “Failure Mechanisms in Value Regulated Lead/Acid Batteries for Cyclic Applications,” J. Power Sources, vol. 109, no. 1, pp. 189-202, June 2002.
[27] C. S. C. Bose and G. W. Mathiesen, “Gas Evolution, Recombination and Grid Corrosion in a VRLA Battery Under High Temperature Operating Conditions,” in Proc. IEEE INTELEC’97, October 1997, pp. 13-17.
[28] J. P. Gun, J. N. Fiorina, M. Fraisse, and H. Mabboux, “Increasing UPS Battery Life: Main Failure Modes, Charging and Monitoring Solutions,” in Proc. IEEE INTELEC’97, October 1997, pp. 389-396.
[29] R. J. Ball, R. Evans, M. Deven, and R. Stevens, “Characterisation of Defects Observed Within the Positive Grid Corrosion Layer of the Valve Regulated Lead/Acid Battery,” J. Power Sources, vol. 103, no. 2, pp. 207-212, January 2002.
[30] 黃廣順,“電池電源模組之並聯運轉”,國立中山大學電機工程研究所碩士論文,2005年5月。
[31] 陳文智,“電池內串聯電槽之工作特性與探討”,國立中山大學電機工程研究所碩士論文,2006年6月。
[32] D. Berndt, “Valve-Regulated Lead-Acid Batteries,” J. Power Sources, vol. 95, no.1-2, pp.2-12, March 2001.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.137.171.121
論文開放下載的時間是 校外不公開

Your IP address is 3.137.171.121
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code