Responsive image
博碩士論文 etd-0812109-145452 詳細資訊
Title page for etd-0812109-145452
論文名稱
Title
微量潤滑應用於微銑削之研究
Effect of Minimum Quantity Lubrication on Tool Wear and Surface Roughness in Micro Milling
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
76
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-07-14
繳交日期
Date of Submission
2009-08-12
關鍵字
Keywords
微量潤滑、微切削加工、微銑刀
minimum/minimal quantity lubrication, micro-machining, micro mill
統計
Statistics
本論文已被瀏覽 5700 次,被下載 7
The thesis/dissertation has been browsed 5700 times, has been downloaded 7 times.
中文摘要
產品微小化是長年的趨勢,而眾多微小化元件製造的方法之中,以微切削加工(micro-machining)具有設備便宜、加工時間較短、容易加工出3D曲面等優點。在高精度要求下,如何讓使用微型刀具(micro tool)之微切削加工,具有生產性及良好的加工精度,微量潤滑(MQL)是個很好的選擇。
本研究是以微銑刀(micro mill)作為切削加工之刀具,並使用微量潤滑輔助切削。在不同進給(1 μm/rev、1.5 μ m/rev及2 μm/rev)與不同切削速度(37.7 m/min、56.55 m/min及75.4 m/min),觀察乾切削與微量潤滑輔助切削下的刀具磨耗、工件表面精度與毛邊的情形。不像傳統銑削,在微銑削實驗下,進給愈大反而會有愈小的刀具磨耗。相對於乾切削,以刀具磨耗量而言,在進給2 μm/rev、切削速度56.55 m/min的條件下,MQL的使用能減少刀具磨耗約56%。就切削液量的使用量而言,1.88 ml/h的切削液量,已可使刀具磨耗量達到最少,再增加切削液並無明顯地改善。而根據實驗結果,工件表面精度變差及毛邊的產生,亦與刀具磨耗呈現正相關之關係。而MQL的使用,亦有減緩工件表面精度變差(Ra值至少下降0.6 μm),抑制毛邊的產生的作用。
Abstract
Product miniaturization is a long-term trend. Mechanical micro-machining is a suitable technique for manufacturing of microstructures characterized by cheap equipments, less working time, and possible complex geometry. For the requirements for high precision manufacture, the use of minimum/minimal quantity lubrication (MQL) is a good strategy for micro-machining due to long tool life and high product accuracy.
This study presents an experimental investigation of the MQL in micro milling. The tool wear, surface roughness, and burr formation are observed at different feeds (1 μm/rev, 1.5 μm/rev, and 2 μm/rev) and cutting speeds ( 37.7 m/min, 56.55 m/min, and 75.4 m/min) under dry and MQL cutting. Unlike conventional milling, greater tool wear is observed at lower feeds. Compared with the same cutting condition for dry cutting (feed 2 μm/rev, cutting speed 56.55 m/min), MQL can reduce the tool wear about 56%. In terms of the consumption of the cutting fluid, oil flow rate of 1.88 ml/h is sufficient for reducing the tool wear in micro milling. According to the experimental results, deterioration of surface finish and burr formation are closely related to the tool wear. The use of MQL, not only reduces the tool wear, but also diminishes the deterioration of surface finish (the improvement of Ra is at least 0.6 μm) and the burr formation.
目次 Table of Contents
謝誌 i
目錄 ii
圖目錄 iv
表目錄 vi
論文摘要 vii
Abstract viii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 5
1.3 論文架構 6
第二章 文獻回顧與探討 7
2.1 切削液之功能與MQL之發展緣起 7
2.2 MQL之相關研究 10
2.3 微切削之相關研究 16
第三章 實驗設備與方法 19
3.1 實驗配置 19
3.2 實驗方法 22
第四章 實驗結果與討論 27
4.1 乾切削與MQL對刀具磨耗之影響 27
4.2 乾切削與MQL對工件表面精度之影響 35
4.3乾切削與MQL對毛邊生成之影響 41
4.4 不同刀具之比較 47
4.5 MQL不同切削液量之比較 49
4.6 MQL不同空氣量之比較 51
第五章 結論與未來展望 54
5.1 結論 54
5.2 未來展望 56
參考文獻 59
附錄:實驗設備 63
參考文獻 References
[1]M. C. Shaw, Metal Cutting Principles, 2nd ed. Oxford, New York, 1995.
[2]G. T. Smith, Advanced Machining: The Handbook of Cutting Technology, Springer-Verlag, London, 1989.
[3]P. S. Sreejith, B. K. A. Ngoi, “Dry machining: Machining of the future,” Journal of Materials Processing Technology, Vol. 101, pp. 287-291, 2000.
[4]F. Klocke, G. Eisenblätter, “Dry cutting,” Annals of the CIRP, Vol. 46, pp. 519-526, 1997.
[5]K. Weinert, I. Inasaki, J. W. Sutherland, T. Wakabayashi, “Dry machining and minimum quantity lubrication,” Annals of the CIRP, Vol.53, pp. 511-537, 2004.
[6]R. Heinemann, S. Hinduja , G. Barrow, G. Petuelli, “Effect of MQL on the tool life of small twist drills in deep-hole drilling,” International Journal of Machine Tools and Manufacture, Vol. 46, pp. 1-6, 2006.
[7]H. Hanyu, S. Kamiya, Y. Murakami, M. Saka, “Dry and semi-dry machining using finely crystallized diamond coating cutting tools,” Surface & Coatings Technology, Vol. 174-175, pp. 992-995, 2003.
[8]R. P. Zeilmann, W. L. Weingaertner, “Analysis of temperature during drilling of Ti6A14V with minimal quantity of lubricant,” Journal of Materials Processing Technology, Vol. 179, pp. 124-127, 2006.
[9]A. Attanasio, M. Gelfi, C. Giardini, C. Remino, “Minimal quantity lubrication in turning: Effect on tool wear,” Wear, Vol. 260, pp. 333-338, 2006.
[10]N. R. Dhar, M. Kamruzzaman, M. Ahmed, “Effect of minimum quantity lubrication (MQL) on tool wear and surface roughness in turning AISI-4340 steel,” Journal of Materials Processing Technology, Vol. 172, pp. 209-304, 2006.
[11]N. R. Dhar, M. T. Ahmed, S. Islam, “An experimental investigation on effect of minimum quantity lubrication in machining AISI 1040 steel,” International Journal of Machine Tools and Manufacture, Vol.47, pp. 748-753, 2007.
[12]A. S. Varadarajan, P. K. Philip, B. Ramamoorthy “Investigations on hard turning with minimal cutting fluid application (HTMF) and its comparison with dry and wet turning,” International Journal of Machine Tools and Manufacture, Vol. 42, pp. 193-200, 2002.
[13]CH R. Vikram Kumar, B. Ramamoorthy, “Performance of coated tools during hard turning under minimum fluid application,” Journal of Materials Processing Technology , Vol.185, pp. 210-216, 2007.
[14]A. R. Machado, J. Wallbank, “The effect of extremely low lubricant volumes in machining,” Wear, Vol. 210, pp. 76-82, 1997.
[15]M. Rahman, A. Senthil Kumar, M. U. Salam, “Experimental evaluation on the effect of minimal quantities of lubricant in milling,” International Journal of Machine Tools and Manufacture, Vol. 42, pp. 593-547, 2002.
[16] Y. S. Liao, H. M. Lin, Y. C. Chen, “Mechanism of minimum quantity lubrication in high-speed milling of hardened steel,” International Journal of Machine Tools and Manufacture, Vol. 47, pp. 1660-1666, 2007.
[17]Y. S. Liao, H. M. Lin, Y. C. Chen, “Feasibility study of the minimum quantity lubrication in high-speed end milling of NAK80 hardened steel by coated carbide tool,” International Journal of Machine Tools and Manufacture, Vol. 47, pp. 1667-1676, 2007.
[18]林憲茂, 最少量潤滑(MQL)應用於NAK80模具鋼高速銑削之研究, 博士論文, 國立台灣大學機械工程研究所, 台北, 2007。
[19]L. N. López de Lacalle, C. Angulo, A. Lamikiz, J. A. Sánchez, “Experimental and numerical investigation of the effect of spray cutting fluids in high speed milling,” Journal of Materials Processing Technology, Vol. 172, pp. 11-15, 2006.
[20]G. Byrnel, D. Dornfeld, B. Denkena, “Advancing cutting technology,” Annals of the CIRP, Vol. 52, pp. 483-507, 2003.
[21]Y. Okazaki, N. Mishima, K. Ashida, “Microfactory and micro machine tools,” Proceeding of the 1st Korea-Japan Conference on Positioning Technology, KIMM, Daejeon, Korea, pp. 1/6-6/6, 15-17 October, 2002.
[22]M. Rahman, A. Senthil Kumar, J.R.S. Prakash, “Micro milling of pure copper,” Journal of Materials Processing Technology , Vol.116, pp. 39-43, 2001.
[23]J. Schmidt, H. Tritschler, “Micro cutting of steel,” Microsystem Technologies, Vol.10, pp. 167-174, 2004.
[24]K. Weinert, V. Petzoldt, “Machining NiTi micro-parts by micro-milling ,” Materials Science and Engineeri ng A, Vol. 481-482, pp. 672-675, 2008.
[25]M. B. G. Jun, S. S. Joshi, R. E. DeVor, S. G. Kapoor, “An experimental evaluation of an atomization-based cutting fluid application system for micromachining,” Journal of Manufacturing Science and Engineering, Vol.130, pp. (031118) 1-8, 2008.
[26]S. Filiz, C. M. Conley, M. B. Wasserman, O. B. Ozdoganlar, “An experimental investigation of micro-machinability of copper 101 using tungsten carbide micro-endmills,” International Journal of Machine Tools and Manufacture, Vol.47, pp. 1088-1100, 2007.
[27]K. Lee, D. A. Dornfeld, “An experimental study on burr formation in micro milling aluminum and copper,” Transactions of the NAMRI/SME, Vol. 30, pp. 255-262, 2002.
[28]K. Lee, B. Stirn, D. A. Dornfeld, “Burr formation in micro-machining aluminum, 6061-T6,” 10th International Conference on Precision Engineering, Japan, 2001.
[29]傅光華等, 切削刀具學, 高立, 台北, 1997。
[30]G. L. Chern, Y. C. Chang, “Using two-dimensional vibration cutting for micro-milling,” International Journal of Machine Tools and Manufacture, Vol.46, pp. 659-666, 2006.
[31]S. S. F. Chang, G. M. Bone, “Burr size reduction in drilling by ultrasonic assistance,” Robotic and Computer-Integrated Manufacutring, Vol. 21, pp. 442-450, 2005.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 44.211.91.23
論文開放下載的時間是 校外不公開

Your IP address is 44.211.91.23
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code