Responsive image
博碩士論文 etd-0812110-123215 詳細資訊
Title page for etd-0812110-123215
論文名稱
Title
複合式光學膜片製作
Fabrication of Compound Film
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
73
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-07-02
繳交日期
Date of Submission
2010-08-12
關鍵字
Keywords
PDMS、田口法、三角錐狀微透鏡陣列、球面3D微結構
Taguchi method, Spherical, Optical film, PDMS, Triangular-pyramidal
統計
Statistics
本論文已被瀏覽 5704 次,被下載 22
The thesis/dissertation has been browsed 5704 times, has been downloaded 22 times.
中文摘要
背光模組常用以增加平面顯示器之視角和亮度,其中關鍵在於導光元件的設
計與製作。導光元件主要零件即為光學膜片,可將光傳遞到整個面板,將光做擴
散、均勻化,並增加光源的使用效率。鑑於光學元件的需求持續增加的情況下,
如何開發高發光效率的照明裝置以達省能,乃為增加顯示器產品競爭力之關鍵。
本研究提出用結合精密加工鑽石磨削、光學微影製程技術與微成型技術製作出包
含三角錐狀微透鏡陣列與3D 球面微結構之雙面複合式光學薄膜。首先,利用田
口法設計18 組實驗參數,以光學模擬軟體FRED 輔助分析,並由田口法計算得
其最佳化組合。藉由精密加工鑽石磨削技術製作最佳之三角錐陣列鎢鋼金屬模
具,並將此模具壓印於熱固性材料PDMS 後,直接加熱固化,用以製作雙面複合式光學薄膜第一面所需之模具。另外,以光學微影技術製作球面微結構,利用曝光、顯影、熱回流技術製作出無縫球形微透鏡陣列, 再利用電鑄法形成球面微透鏡之鎳鈷金屬模具,並將此模具翻印於PDMS 材料後,用以製作雙面複合式光學薄膜第二面所需之模具。再藉由光學級UV 膠UV 固化成型技術,結合鎢鋼與鎳鈷金屬模具作熱壓印,製作出應用於背光模組之雙面複合式光學薄膜。最後,使用光譜色度儀PR650 量測其輝度值,得以驗證模擬結果。透過這些光學膜片,能讓提升整個螢幕的亮度以及光均勻性,故能增加光使用的效率。
Abstract
The backlight module is usually used to increase visual angle and brightness of liquid
crystal display (LCD). Thus, the design and fabrication of optical films, including light guide plate, diffuser film, and brightness enhancement film (BEF), are critical factors to decide the optical efficiency in a backlight module. In order to improve the optical efficiency for power-saved display with competitiveness, this study presents a new fabrication process combining precision machining, lithography, and hot-embossing techniques to form a two-side-patterned optical film. One side of the optical film is micro triangular-pyramidal array (MTPA) and the other is micro spherical lens array(MSLA). First, the Taguchi method is applied to design the optimal microstructure configuration by the assistance of the optical software, FRED. Second, a tungsten (W) steel mold (as the mold to hot emboss MTPA) is manufactured by precision machining including optical projection grinding, lapping, and polishing processes. Meanwhile, a nickel-cobalt (Ni-Co) mold (as the mold to hot emboss MSLA) is fabricated by electroplating process. Then, polydimethylsiloxane (PDMS) is used to replicate the MTPA and MSLA patterns, on W and Ni-Co metal molds, respectively, and the replicated PDMS films are used as the molds to form a two-side-patterned optical film. In addition, the optical property such as luminance is measured by photo research 650 (PR 650) to evidence the optical function of the two-side-patterned optical film. From the experimental results, both brightness and uniformity can be improved by this film;thus, optical efficiency is successfully increased in this study.
目次 Table of Contents
目錄 I
圖目錄 V
表目錄 IX
摘要 X
ABSTRACT XI
第一章 導論 1
1.1 前言 1
1.2 背光膜組織結構介紹 3
1.2.1 光源 3
1.2.2 導光板 4
1.2.3 反射片 5
1.2.4 擴散片5
1.2.5 稜鏡片5
1.3 文獻回顧 6
1.4 研究動機與目的 8
1.5 論文架構 9
第二章 光學膜片最佳化設計 10
2.1 前言10
2.2 球面透鏡光學特徵10
2.3 球面微透鏡 12
2.4 三角錐微透鏡 15
2.5 光學效益計算 16
2.6 田口法之光學膜片最佳化設計17
2.6.1 田口法闡述 17
2.6.2 S/N 值之分析 17
2.6.3 變異數分析 18
2.6.4 學膜片之因子及水準 18
2.7 研究流程 22
第三章 實驗規劃流程與步驟 25
3.1 六角無縫球面微透鏡 25
3.1.1 黃光微影製程 26
3.1.2 熱回流 27
3.1.3 NICO 合金電鍍製程 28
3.2 三角錐微透鏡 29
3.3 PDMS 翻模技術 30
3.4 紫外光固化技術 31
3.5 光電特性量測 32
第四章 實驗結果與討論 34
4.1 最佳化條件選擇 34
4.2 UV 微影製程結果 39
4.3 熱回流製程結果 40
4.4 電鑄製程結果 41
4.5 三角錐微透鏡製程結果 43
4.6 PDMS 與UV 膠翻模結果 44
4.7 光電特性量測結果 49
4.8 量測結果與模擬值作比較 51
第五章 結論與未來展望 53
5.1 結論 53
5.2 未來展望 54
參考文獻 55

圖目錄
圖1.1- 1 LCD 示意圖 2
圖1.1- 2 LCM 示意圖 2
圖1.2.1- 1 直下式光源 4
圖1.2.1- 2 側照式光源4
圖2.2-1 微透鏡名詞定義及其相關位置 11
圖2.2- 2 接觸角示意圖 12
圖2.3- 1 微圓柱之熱回流製程(a)微圓柱之直徑及厚度位置 13
圖2.3- 2 簡單描述微透鏡之整體計算 13
圖2.4-1 三角錐尺寸對應關係 15
圖2.6.4- 1 複合式微透鏡之尺寸相對位置 21
圖2.6.4- 2 球形透鏡高度限制 21
圖2.7- 1 研究流程 24
圖3.1- 1 多邊形微透鏡陣列之製程步驟:(a)塗佈光阻;(b)曝光顯模(h)UV 固化;(i)膜片製作完成影;(c)熱回流;(d)濺鍍;(e)
電鍍;(f)翻模;(g)脫模;(h)UV 固化;(i)膜片製作完成 26
圖3.2- 1 尖刀型鑽石砂輪片示意圖 30
圖3.2- 2 三角錐微透鏡陣列金屬模具之加工路徑示意圖 30
圖3.4- 1 高度控制模具搭配UV 固化UV 膠之示意圖 32
圖3.5- 1 量測系統示意圖 33
圖3.5- 2 光源九點量測 33
圖4.1- 1 FRED 模型示意圖 35
圖4.1- 2 三角錐微透鏡面向光源之光線收斂性 35
圖4.1- 3 分析面之分割示意圖 36
圖4.1- 4 所有因子水準之S/N 值計算結果 38
圖4.2- 1 No.A 光阻微結構 39
圖4.2- 2 No.B 光阻微結構 40
圖4.3- 1 No.A 微結構陣列熱回流結果 40
圖4.3- 2 No.B 微結構陣列熱回流結果 41
圖4.4- 1 電鍍製程中微結構成長情形示意圖 41
圖4.4- 2 No.A 六角無縫微透鏡NiCo 模具SEM 圖 42
圖4.4- 3 No.B 六角無縫微透鏡NiCo 模具SEM 圖 42
圖4.5- 1 No.C 三角微結構鎢鋼模具SEM 圖 43
圖4.5- 2 No.D 三角微結構鎢鋼模具SEM 圖 44
圖4.6- 1 PDMS 加熱溫度變化 45
圖4.6- 2 組No.1 雙面結構光學薄膜圖,(a)翻模示意圖,(b)上表面結
構,(c) 下表面結構 46
圖4.6- 3 組No.2 雙面結構光學薄膜,(a)翻模示意圖,(b)上表面結構,
(c) 下表面結構 47
圖4.6- 4 組No.3 雙面結構光學薄膜,(a)翻模示意圖,(b)上表面結構,
(c) 下表面結構 48
圖4.7- 1 平均九點輝度值比較 49
圖4.7- 2 均勻性之比較 50
圖4.7- 3 三組實驗以及無貼附光學膜片之光源S/N 值比較 51
圖4.8- 1 三組參數之模擬結果 52
圖4.8- 2 實驗與模擬值之S/N 值比較 52

表目錄
表2.6.4- 1 最佳化條件及18 組光學模擬的S/N 值和矩陣陣列 19
表2.6.4- 2 田口法設計之8 個因子及3 組水準 19
表3.1.3- 1 NiCo 合金化學組成與電鍍條件 29
表4.1- 1 田口法因子組合與光學模擬之S/N 值 37
表4.1- 2 表4.1-2 各因子之S/N 值及其變異係數 37
表4.1- 3 實驗參數表(長度單位:μm) 39
表4.2- 1 微結構UV 微影製程參數 39
參考文獻 References
1. S. Mo‥ller and S. R. Forrest, “Improved light out-coupling in organic
light emitting diodes employing ordered microlens arrays,” Journal
of Applied Physics 91(5). (2002). 3324-3327.
2. E. Hecht, Optics, San Francisco, Assison Wesley (2002).
3. Y. M. Hwang, C.T. Pan*, M. F. Chen, “Fabrication of Various
Dimensions of High Fill-Factor Micro-Lens Arrays for OLED
Package,” Sensors and Actuators A: physical 159(1).(2010).126-134.
4. K. H. Liu, M. F. Chen, Y. C. Chen, Y. M. Hwang, C. T. Pan, S. C.
Shen, M.Y. Chang, W. Y. Huang, W. C. Li, “Fabrication of an
aspherical microlens for OLED withmodified etching process,”
International Conference on Electrical and Control Engineering, Zibo,
China. (2010)
5. C.T.Pan, M.F. Chen, P.J. Cheng, Y.M. Hwang, S.D. Tseng,
J.C.Huang, “Fabrication of Gapless Dual-curvature Micro-Lens as
Diffuser for LED Package”, Sensors and Actuators A-Physical 150 (1)
16. March. (2009). 156-167
6. M.P. Bigwood., “Patent Trend Analysis : Incorporate Current Year
90 Data”,World Patent Information 19(4).(1997). 243-249
7. S. Cobb, Jr., M.E. Gardiner, K.M. Kotchick, K. Toyooka and W.A.
Hibbard,“Variable pitch structured optical film”, US Patent, No
5919551 July.( 1999).
8. M.B. O'Neill and S. Cobb, Jr., “Brightness enhancement film with
soft cutoff”, US Patent, No 5917664, June. (1999).
9. E. Higuchi and Y. Koike, “ Surface light source device and liquid
crystal display”, US Patent, No 5887964, March. (1999).
10. S.C. Tang, “Brightness enhancement film”, US Patent, No 6277471,
August.(2001).
11. S.C. Tang, “ Uniform curved surface structure of a brightness unit for
a brightness enhancement film”, US Patent, No 6759113, July.
(2004).
12. H. Kojima, “ Backlight system for liquid crystal display comprising
prism lenshaving apex angle of 80.degree.-85.degree. and refractive
index of 1.57-1.59”, US Patent, No 6011601, January. (2000).
13. R. Winston, B.A. Jacobson, R.L. Holman and N.A. Gitkind,
“Tapered multilayer luminaire devices”, US Patent, No 5303322,
April. (1994).
14. F. Li, X. Li, J. Zhang, and B. Yang, “Enhanced light extraction from
organic light-emitting devices by using microcontact printed silica
colloidal crystals,” Organic Electronics 8. (2007). 635-639.
15. L. C. Ling, Y. I. Yen, F. C. Ho, “An efficient illumination system for
single-pane LCD projector,” SID 01 DIGEST, (2001). 1184-1187.
16. Sung-Keun Lee, Kwang-Cheol Lee, and Seung S. Lee, “ Microlens
fabrication by the modified LIGA process ”, IEEE. (2002). 520-523.
17. C.T.Pan*, C.Y. Su, “Study of micro-lens array by reflow process”,
Journal of modern optics 55(17). (2008). 2843-2856.
18. Mohammed Ashraf, Cherry Gupta, Franck Chollet, Stuart Victor
Springham, and Rajdeep Singh Rawat, “ Geometrical
characterization techniques for microlens made by thermal ”, Optics
and Lasers in Engineering 46. (2008). 711-720.
19. M.H. Wu and G.M. Whitesides, “Fabrication of two-dimensional
arrays of microlenses and their application in photolithography,”
Journal of Micromechanics and Microengineering 12.
(2002) .747-758.
20. M.H. Wu, K.E. Paul, and G.M. Whitesides, “Patterning flood
illumination with microlens arrays,” Applied Optics, 41(13). (2002).
2575-2585.
21. C.S. Lim, M.H. Hong, Y. Lin, G.X. Chen, A.S. Kumar, M. Rahman,
L.S. Tan, J.Y.H. Fuh, and G.C. Lim, “Sub-micron surface patterning
by laser irradiation through microlens arrays,” Journal of Materials
Processing Technology 192-193 .(2007). 328-333.
22. D.M. Hartmann, O. Kibar and S.C. Esener, “Optimization and
theoretical modeling of polymer microlens array fabricated with the
hydrophobic effect,” Applied Optics, 40(16). (2001). 2736-2746.
23. W.K. Huang, C.J. Ko and F.C. Chen, “Organic selective-area
patterning method for microlens array fabrication,” Microelectronic
Engineering 83 .(2006). 1333-1335.
24. S. Moon, N. Lee and S. Kang, “Fabrication of a microlens array
using micro-compression molding with an electroformed mold
insert,” Journal of Micromechanics and Microengineering 13.
(2003) .98-103.
25. Y. Fu, “Investigation of microlens mold fabricated by focused ion
beam technology,” Microelectronic Engineering 56 .(2001). 333-338.
26. M. Y. Yang, and H. C. Lee, “ Local material removal mechanism
considering curvature effect in the polishing process of the small
aspherical lens die ”, Journal of Materials Processing Technology
116. (2001). 298-304.
27. P. Zhang, G. Londe, J. Sung, E. Johnson, M. Lee and H.J. Cho,
“Microlens fabrication using an etched glass master,” Microsystem
Technology 13. (2007). 339-342.
28. Yang Chen, Allen Y Yi, Donggang Yao, Fritz Klocke and Guido
Pongs, “A reflow process for glass microlens array fabrication by use
of precision compression molding,” Journal of Micromechanics and
Microengineering 18 .(2008). 055022-055029.
29. Jung Moo Hong, Fatih M Ozkeskin, and Jun Zou, “ A
micromachined elastomeric tip array for contact printing with
variable dot size and density ”, Journal of Micromechanics and Microengineering 18. (2008). 1-6.
30. L. Desmet, S.V. Overmeire, J.V. Erps, H. Ottevaere, C. Debaes and
H. Thienpont, “Elastomeric inverse molding and vacuum casting
process characterization for the fabrication,” Journal of
Micromechanics and Microengineering 17 .(2007). 81-88.
31. C.Y. Chang, S.Y. Yang, L.S. Huang and J.H. Chang, “Fabrication of
plastic microlens array using gas-assisted micro-hot-embossing with
a silicon,” Infrared Physics & Technology 48. (2006). 163-173.
32. Chih-Yuan Chang, Sen-Yeu Yang, and Ming-Hui Chu, “ Rapid
fabrication of ultraviolet-cured polymer microlens arrays by soft
roller stamping process ”, Microelectronic Engineering 84. ( 2007).
355-361.
33. H.J. Nam, D.Y. Jung, G.R. Yi and H. Choi, “Close-packed
hemispherical microlens array from two-dimensional ordered
polymeric microspheres,” Langmuir 22 .(2006). 7358-7363.
34. T.K. Shih, C.F. Chen, J.R. Ho, F.T. Chuang, “Fabrication of PDMS
(polydimethylsiloxane) microlens and diffuser using replica
molding,” Microelectronic Engineering 83. (2006). 2499-2503.
35. S.I. Chang and J.B. Yoon, “Microlens array diffuser for a
light-emitting diode backlight system,” Optics Letters 31(20) .(2006).
3016-3018.
36. C.T. Pan*, C.H. Su, “Fabrication of High Fill Factor Optical Film
using Two-Layer Photoresists”, Journal of Modern Optics 55(1).
(2008). 33-42.
37. 吳志政、林奇鋒、楊博華、郭聰源,導光板微結構對出光面輝度
影響之研究,2008 精密機械與製造科技研討會論文集,屏東,
台灣。
38. 簡亦鐘、陳昭先,導光板最佳化設計,2007 光電科技研討會論
文集,台中,台灣,GO-29。
39. B. Li and Q. Chen, “Solid micromechanical valves fabricated with in
situ UV-LIGA assembled nickel,” Sensors and Actuators A
126 .(2006). 187-193.
40. X.M. Jing, D. Chen, D. M. Fang, C. Huang, J.Q. Liu and X. Chen,
“Multi-layer microstructure fabrication by combining bulk silicon
micromachining and UV-LIGA technology,” Microelectronics
Journal 38 .(2007). 120-124.
41. Y.H. Zhang, G.F. Ding, S. Fu and B.C. Cai, “A fast switching
bistable electromagnetic microactuator fabricated by UV-LIGA
technology,” Mechatronics 17 .(2007). 165-171.
42. H. Yang, C.Y. Yang and M.S. Yeh, “Fabrication of miniaturized
variable-focus lens using liquid filling technique,” Proceeding of
2007 Design, Test, Integration and Packaging of MEMS/MOEMS
Conference, Stresa, Italy .(2007). 377-382.
43. 陳明發,具有雙層微透鏡陣列結構之擴散膜片設計與製作,國立
中山大學機電所碩士論文,民國九十八年七月。
44. 陳佳麟,三角錐狀微透鏡陣列製作,國立中山大學機電所碩士論
文,民國九十八年二月。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.22.249.158
論文開放下載的時間是 校外不公開

Your IP address is 3.22.249.158
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code