Responsive image
博碩士論文 etd-0812113-141426 詳細資訊
Title page for etd-0812113-141426
論文名稱
Title
金氧半場效電晶體大訊號模型建立
Large Signal Model Establishment of Metal-oxide Semiconductor Field-effect Transistors
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
52
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-23
繳交日期
Date of Submission
2013-09-12
關鍵字
Keywords
大訊號模型、崩潰、沃特拉級數、金氧半場效電晶體、非線性
large signal model, Volterra series, nonlinearity, breakdown, MOSFET
統計
Statistics
本論文已被瀏覽 5708 次,被下載 251
The thesis/dissertation has been browsed 5708 times, has been downloaded 251 times.
中文摘要
本文分析崩潰電感機制引起的三階調變項減少,首次利用沃特拉模型建立含物理機制之崩潰網路大訊號模型,應用於高頻(RF)金氧半場效電晶體(MOSFET)中。為了較高速的操作與改善在高頻的特性,互補式金氧半場效電晶體製程技術持續地縮減。當元件通道長度越短,導致電場強度越強,越容易使元件崩潰。因此正確的元件崩潰機制越益重要。
從本文大訊號模型分析中,計算出當崩潰電感產生時,導致整體的高階非線性減小。證實出此為非線性轉導與崩潰電感之非線性互相作用而產生抵銷之機制。且當量測到輸入三階交叉點(IIP3)於某些偏壓下越高,同時崩潰電感之非線性源為主宰項。因此,雪崩崩潰延遲導致的電感行為,會增進互補式金屬氧化物半導體之功率放大器操作於接近崩潰之區域。
Abstract
The reduction of intermodulation distortion (IMD) due to inductive behavior for the radio frequency (RF) metal-oxide-semiconductor field-effect transistors (MOSFETs) is explored using Volterra series based on the nonlinear model incorporating the physical inductive breakdown network for the first time. For faster operation and to improve significantly the characteristic, the CMOS technology is continuously scaled down. The shorter channel length enhances the higher electric field effects, and thus results in breakdown easily. Therefore, the breakdown mechanism is more significant for accurate device characterization.
From our analysis of the large signal model, the calculated total magnitude of the high order nonlinearities is lower when the breakdown inductance occurs. It has been proved that the cancellation between nonlinear transconductance and reactive nonlinearity from inductance. Which the higher input third-order intercept point (IIP3) is obtained at the biases where the breakdown inductance nonlinearity dominates. Therefore, the inductive behavior due to avalanche delay can be beneficial to the CMOS power amplifier (PA) when operating near the breakdown region.
目次 Table of Contents
目錄-----------------------------------------------------------------------------------------i
圖目錄-----------------------------------------------------------------------------------iii
表目錄------------------------------------------------------------------------------------iv
第一章 緒論-----------------------------------------------------------------------------1
1.1 研究動機------------------------------------------------------------------1
1.2 發展概數-----------------------------------------------------------------------2
1.3 論文架構-----------------------------------------------------------------------3
第二章 小訊號等效模型---------------------------------------------------------5
2.1 簡介-----------------------------------------------------------------------------5
2.2電晶體直流電流特性---------------------------------------------------------5
2.3 微波網路分析儀與測量之散射參數方法--------------------------------8
2.4金氧半場效電晶體飽和區小訊號模型----------------------------------10
2.5金氧半場效電晶體崩潰區小訊號模型----------------------------------17
第三章 金氧半場效電晶體沃特拉崩潰大訊號模型建立----------------------23
3.1 簡介---------------------------------------------------------------------------23
3.2 沃特拉模型介紹------------------------------------------------------------23
3.3 高頻非線性沃特拉崩潰模型之建立-----------------------------------26
3.4 非線性沃特拉大訊號模型驗證------------------------------------------31
第四章 大訊號沃特拉模型之特性分析-----------------------------------------35
4.1 簡介---------------------------------------------------------------------------35
4.2 非線性源與線性度------------------------------------------------------35
4.3非線性源定性分析---------------------------------------------------------37
第五章 結論----------------------------------------------------------------------------40
參考文獻--------------------------------------------------------------------------------41
參考文獻 References
[1] C. I. Lee, W. C. Lin, and Y. T. Lin, "Modeling inductive behavior of MOSFET scattering parameter S22 in the breakdown regime," IEEE Trans. Microw. Theory Tech., vol. 60, no. 3, pp. 502-508, Mar. 2012.
[2] K. Kurokawa, "Power waves and the scattering matrix," IEEE Trans. Microw. Theory Tech., vol. 13, no. 2, pp. 194-202, Mar. 1965.
[3] D. M. Pozar, Microwave Engineering. New York: Wiley, 2005.
[4] W. R. Curtice and M. Ettenberg, "A nonlinear GaAs FET model for use in the design of output circuits for power amplifiers," IEEE Trans. Microw. Theory Tech., vol. 33, no. 12, pp. 1383-1394, June 1985.
[5] I. Angelov, L. Bengtsson, and M. Garcia, "Extensions of the Chalmers nonlinear HEMT and MESFET model," IEEE Trans. Microw. Theory Tech., vol. 44, no. 10, pp. 1664-1674, Oct. 1996.
[6] J. W. Bandler, Q. J. Zhang, S. Ye, and S. H. Chen, "Efficient large-signal FET parameter extraction using harmonics," IEEE Trans. Microw. Theory Tech., vol. 37, no. 12, pp. 2099-2108, Dec. 1989.
[7] M. Sipila, K. Lehtinen, and V. Porra, "High-frequency periodic time-domain waveform measurement system," IEEE Trans. Microw. Theory Tech., vol. 36, pp. 1397-1405, Oct. 1988.
[8] W. Ce-Jun, Y. E. Lan, J. C. M. Hwang, H. Wu-Jing, and J. A. Higgins, "Waveform-based modeling and characterization of microwave power heterojunction bipolar transistors," IEEE Trans. Microw. Theory Tech., vol. 43, no. 12, pp. 2899-2903, Dec. 1995.
[9] L. Seonghearn, K. Cheon Soo, and Y. Hyun Kyu, "A small-signal RF model and its parameter extraction for substrate effects in RF MOSFETs," IEEE Trans. Electron Devices, vol. 48, no. 7, pp. 1374-1379, Jul. 2001.
[10] J. Scott and T. Low, "Avalanche breakdown in HBTs: variation with collector current and effect on linearity," in Sym., 22nd Annual, GaAs IC Nov. 2000, pp. 237-240.
[11] G. Gonzalez, Microwave Transistor Amplifiers: Analysis and Design, 2nd ed. NJ: Prentice-Hall, 1997.
[12] M. C. A. M. Koolen, J. A. M. Geelen, and M. P. J. G. Versleijen, "An improved de-embedding technique for on-wafer high-frequency characterization," in Proc. IEEE Bipolar/BiCMOS Circuits and Technology Meeting, Sep 1991, pp. 188-191.
[13] S. F. Tin, A. A. Osman, K. Mayaram, and C. Hu, "A simple subcircuit extension of the BSIM3v3 model for CMOS RF design," IEEE J. Solid-State Circuits, vol. 35, no. 4, pp. 612-624, Apr. 2000.
[14] H. Wong, "A physically-based MOS transistor avalanche breakdown model," IEEE Trans, Electron Devices, vol. 42, no. 12, pp. 2197-2202, Dec. 1995.
[15] M. Schetzen, The Volterra and Wiener Theories of Nonlinear Systems. New York: Wiley, 1980.
[16] S. A. Maas, Nonlinear Microwave and RF Circuits, 2nd ed.: Norwood, MA: Artech House, 2003.
[17] N. B. C. Jose´ Carlos Pedro, Intermodulation Distortion in Microwave and Wireless Circuits. Norwood: Artech House, 2003.
[18] Y.-J. Chan, C.-H. Huang, C.-C. Weng, and B.-K. Liew, "Characteristics of deep-submicrometer MOSFET and its empirical nonlinear RF model," IEEE Trans. Microw. Theory Tech., vol. 46, no. 5, pp. 611-615, May 1998.
[19] J. H. K. Vuolevi and T. Rahkonen, "Extraction of a nonlinear AC FET model using small-signal S-parameters," IEEE Trans. Microw. Theory Tech., vol. 50, no. 5, pp. 1311-1315, May 2002.
[20] F. Macraigne, T. Reveyrand, G. Neveux, D. Barataud, J. M. Nebus, A. Soury, and E. Ngoya, "Time-domain envelope measurements for characterization and behavioral modeling of nonlinear devices with memory," IEEE Trans. Microw. Theory Tech., vol. 54, no. 8, pp. 3219-3226, Aug. 2006.
[21] N. Guofu, L. Qingqing, J. D. Cressler, C. S. Webster, and D. L. Harame, "RF linearity characteristics of SiGe HBTs," IEEE Trans. Microw. Theory Tech., vol. 49, pp. 1558-1565, Sep. 2001.
[22] A. S. Sedra and K. C. Smith, Microelectronic Circuits, 6th ed. Philadelphia PA: Saunders College Publishing, 2010.
[23] P. J. Tasker and J. Benedikt, "Waveform inspired models and the harmonic balance emulator," IEEE Microw. Mag., vol. 12, no. 2, pp. 38-54, Apr. 2011.
[24] L. Bin and S. Prasad, "Intermodulation analysis of the collector-up InGaAs/InAlAs/InP HBT using Volterra series," IEEE Trans. Microw. Theory Tech., vol. 46, no. 9, pp. 1321-1323, Sep 1998.
[25] C. M. Grens, C. Peng, and J. D. Cressler, "Reliability of SiGe HBTs for power amplifiers—part I: large-signal RF ierformance and operating limits," IEEE Trans. Device and Mater. Reliab., vol. 9, no. 3, pp. 431-439, Sep. 2009.
[26] B. Toole, C. Plett, and M. Cloutier, "RF circuit implications of moderate inversion enhanced linear region in MOSFETs," IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 51, no. 2, pp. 319-328, Feb. 2004.
[27] K. Sanghoon, C. Byounggi, and B. Kim, "Linearity analysis of CMOS for RF application," IEEE Trans. Microw. Theory Tech., vol. 51, no. 3, pp. 972-977, Mar. 2003.
[28] W. Xiaoyun, N. Guofu, Y. Li, Y. Ming-Ta, and S. S. Taylor, "Modeling and characterization of intermodulation linearity on a 90-nm RF CMOS technology," IEEE Trans. Microw. Theory Tech., vol. 57, no. 4, pp. 965-971, Apr. 2009.
[29] F. Verbeyst and V. Bossche, "VIOMAP, the S-parameter equivalent for weakly nonlinear RF and microwave devices," IEEE Trans. Microw. Theory Tech., vol. 42, no. 12, pp. 2531-2535, May 1994.
[30] J. C. Pedro and J. P. Martins, "Amplitude and phase characterization of nonlinear mixing products," IEEE Trans. Microw. Theory Tech., vol. 54, no. 8, pp. 3237-3245, Aug. 2006.
[31] T. R. Cunha, E. G. Lima, and J. C. Pedro, "Validation and Physical Interpretation of the Power-Amplifier Polar Volterra Model," IEEE Trans. Microw. Theory Tech., vol. 58, no. 12, pp. 4012-4021, Dec. 2010.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code