Responsive image
博碩士論文 etd-0812113-144754 詳細資訊
Title page for etd-0812113-144754
論文名稱
Title
氧化銦薄膜摻雜鉻之物性研究
The physical properties of chromium-doped indium oxide thin films
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
97
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-30
繳交日期
Date of Submission
2013-09-12
關鍵字
Keywords
氧化銦、氧空缺、稀磁性半導體、薄膜、濺鍍
spin, RKKY, CIO, XRD, ITO
統計
Statistics
本論文已被瀏覽 5693 次,被下載 760
The thesis/dissertation has been browsed 5693 times, has been downloaded 760 times.
中文摘要
稀磁性氧化物是新一代的自旋電子元件的重要材料,本研究鑑於氧化銦是今日透明導電材料最廣為使用的原料,可以穩定於非晶相,奈晶相及單晶相,也是未來透明半導體元件的主角。然研究此材料之稀磁性相對較少,本研究擬在氧化銦中摻雜Cr,研究Cr對磁性及電性的影響。氧化銦另一姊妹材料是摻錫氧化銦 (ITO),本研究也一併比較摻Cr 後的特性。
研究發現,成長於Si基板上的氧化銦系列薄膜的結晶性較成長於Al2O3者差,是以鐵磁性的表現也較小。電性上,成長於Si基板之樣品在高溫區出現電阻轉換,此轉換的機制尚不明;而成長於Al2O3者則因結晶結構較佳,出現預期中的半導體特性。 未摻錫薄膜的行為較為一致,摻雜Cr比例越高,呈現的鐵磁磁矩也越高,但Cr的磁矩如何受到導電電子的媒介尚未知。摻雜錫之樣品,因錫形成簡併導帶,故電苛密度較高,很可能磁性透過RKKY媒介。雖本研究未能解答許多問題,但以氧化銦系列之稀磁性氧化物的穩定度,若能更深入了解其中的機制,必能增加未來應用的可能性。
Abstract
Diluted magnetic oxides (DMO) are one of the new materials for the new generation spintronic devices. In2O3 series materials are the most used one in transparent conducting devices and can be stabilized in amorphous, nano-crystalline and single crystalline, have great potential application in the future. However, comparison with other DMOs, such as ZnO and GaMnAs, research in In2O3 DMO is rare. This study aims at the physical properties of the pure In2O3 and ITO by doping of Co.
It is found that films grown on Si substrates exhibit poor crystalline structure than those on Al2O3, such that has weaker ferromagnetic coupling. A clear resistance transition at high temperature is observed while only a simple semiconducting like resistance curve, as expectation, is found for films grown on Al2O3. For Cr doped In2O3 samples, ferromagnetic coupling is proportional to Cr dopants. However, the mechanism for this coupling is still unknown. For Cr doped ITO samples, due to the degenerate conduction band, the magnetic moment of Cr is highly possible mediated by RKKY mechanism. This study has discovered a few properties of In2O3 series diluted magnetic oxides. Because of these materials exhibits high stability in film growth and to environment, their future application can be realized if more research can be employed.
目次 Table of Contents
目錄
論文審定書---------------------------------------------------------------------------------------- i
致謝------------------------------------------------------------------------------------------------ ii
摘要----------------------------------------------------------------------------------------------- iii
Abstract------------------------------------------------------------------------------------------ vi
目錄------------------------------------------------------------------------------------------------ v
表目錄------------------------------------------------------------------------------------------- vii
圖目錄------------------------------------------------------------------------------------------ -viii
第一章 簡介-------------------------------------------------------------------------------------- 1
1-1 前言----------------------------------------------------------------------------------- 1
1-2 研究動機與目的-------------------------------------------------------------------- 2
第二章 理論研究與文獻回顧---------------------------------------------------------------- 4
2-1 氧化銦的背景及物理性質-------------------------------------------------------- 4
2-2 稀磁性半導體之背景介紹-------------------------------------------------------- 6
2-2-1 稀磁性半導體發展之由來-------------------------------------------------- 6
2-2-2 何謂稀磁性半導體?-------------------------------------------------------- 7
2-2-3 稀磁性半導體發展之過程-------------------------------------------------- 9
2-3 相關文獻回顧---------------------------------------------------------------------- 10
2-3-1 氧化銦和摻雜過渡金屬於氧化銦之鐵磁性--------------------------- 11
2-3-2 摻雜鉻之氧化銦文獻回顧------------------------------------------------- 14
2-4 相關理論之介紹------------------------------------------------------------------ 28
2-4-1 弱局域化(Weak localization)---------------------------------------------- 28
2-4-2 可變程跳躍模型------------------------------------------------------------ 30
2-4-3 熱激發跳躍模型------------------------------------------------------------- 30
2-4-4 小極化子跳躍模型--------------------------------------------------------- 31
2-4-5 s-d 交換相互作用(s-d exchange interaction)---------------------------- 31
2-4-6 進藤效應(Kondo Effect)--------------------------------------------------- 32
2-4-7 RKKY 模型------------------------------------------------------------------ 32
2-4-8 束縛磁極化子模型 (Bound Magnetic Polaron Model ,BMP)------- 32
2-4-9 可變程跳躍同心圓模型(VRH concentric bounded model)----------- 33
第三章 儀器介紹及實驗方法--------------------------------------------------------------- 36
3-1 多靶磁控濺鍍系統(Multi-Target Sputter)-------------------------------------------- 36
3-2 基板清洗---------------------------------------------------------------------------- 40
3-3 樣品製備---------------------------------------------------------------------------- 41
3-4 樣品篩選---------------------------------------------------------------------------- 43
3-5 結晶相氧化銦之蝕刻液---------------------------------------------------------- 44
3-6 光學微影系統---------------------------------------------------------------------- 45
3-7 X-ray 繞射系統-------------------------------------------------------------------- 47
3-8 原子力顯微鏡(Atomic Force Microscopic, AFM)----------------------- 51
3-9 超導量子干涉儀------------------------------------------------------------------- 54
3-10 低溫變磁場直流電性量測系統----------------------------------------------- 59
3-11 實驗製備流程圖----------------------------------------------------------------- 63
第四章 實驗結果與分析--------------------------------------------------------------------- 64
4-1結構量測---------------------------------------------------------------------------- 64
4-1-1 薄膜厚度量測---------------------------------------------------------------- 64
4-1-2 X-ray 繞射-------------------------------------------------------------------- 65
4-1-3 (222) 晶體數據擬----------------------------------------------------------- 66
4-2電性量測---------------------------------------------------------------------------- 71
4-2-1 變溫電阻率曲線------------------------------------------------------------- 71
4-2-2 室溫霍爾效應量測---------------------------------------------------------- 76
4-3 室溫M-H曲線量測-------------------------------------------------------------- 78
4-4 磁性機制---------------------------------------------------------------------------- 80
第五章 結論------------------------------------------------------------------------------------ 81
參考文獻---------------------------------------------------------------------------------------- 82

表目錄
第二章
表2-1 不同氧分壓 Cr(2%): In2O3樣品的磁性和電性參數------------------------- 17
表2-2 高真空退火樣品相關電性和磁性參數------------------------------------------- 20
表2-3單靶濺鍍和雙靶共鍍於Si和YSZ基板的CIO薄膜樣品的結構、磁性和
電性參數------------------------------------------------------------------------------- 22
第三章
表3-1 各摻雜比例之薄膜成長條件參數------------------------------------------------- 42
表3-2 樣品結晶相與導電性良好之篩選結果------------------------------------------- 43
第四章
表4-1 成長於400℃ Si和Al2O3基板之不同比例的氧化銦摻雜鉻(CIO) 之
樣品條件與簡稱---------------------------------------------------------------------- 64
表4-2 CIO 400℃薄膜厚度------------------------------------------------------------------ 64
表4-3擬合之半高寬、布拉格繞射角、Grain size和晶格常數---------------------- 68
表4-4 有摻鉻之氧化銦樣品的結構、磁性、和電性之參數------------------------- 80

圖目錄
第二章
圖2-1 n型半導體之雜質能階在濃度由低往高增加時,
形成簡併半導體之示意圖------------------------------------------------------------ 5
圖2-2 立方晶系In2O3單位晶胞(unitcell)------------------------------------------------ 5
圖2-3 晶格結構為Cubic Bixbyite 的 In2O3--------------------------------------------- 6
圖2-4 三種不同型態之半導體: (A)磁性半導體,(B)稀磁性半導體,
(C)非磁性半導體----------------------------------------------------------------------- 8
圖2-5 T. Dietl 等人以平均場理論計算5%Mn摻雜於不同材料之
p型半導體的居禮溫度預測值----------------------------------------------------- 10
圖2-6不同溫度下Ni: In2O3沈積於 MgO和Al2O3基板XRD-------------------- 11
圖2-7不同溫度下Ni: In2O3於Al2O3基板的磁滯曲線----------------------------- 12
圖2-8 550°C下Ni: In2O3於Al2O3基板的M-T曲線-------------------------------- 12
圖2-9 薄膜在 MgO和 Al2O3基板於550°C成長的XRD------------------------- 13
圖2-10在 MgO和Al2O3基板上各摻雜元素在室溫下的飽和磁化量分佈圖--- 13
圖2-11各摻雜元素於 In2O3之M-T曲線,左圖是MgO基板,
右圖Al2O3基板---------------------------------------------------------------------- 13
圖2-12 在室溫300K,MgO基板上的 In2O3薄膜之M-H曲線------------------- 14
圖2-13 在 Si/SiO2基板上Cr(2%): In2O3薄膜(圖上方)與Si/SiO2基板
(圖下方)之X-ray 繞射---------------------------------------------------------- 15
圖2-14不同氧壓的Cr(2%): In2O3之電阻率與溫度相依曲線---------------------- 15
圖2-15不同氧壓的Cr(2%): In2O3之M-H曲線--------------------------------------- 16
圖2-16 不同氧壓的Cr(2%): In2O3之M-T曲線--------------------------------------- 17
圖2-17 (a)為立方晶相 In2O3 之標準樣品X-ray繞射(b)為 Cr(2.3%): In2O3
塊材的X-ray繞射(上方) 和純 In2O3 塊材樣品X-ray繞射(下方)
(c)為 Cr(2.3%): In2O3塊材的X-ray繞射(上方) 和純 In2O3
薄膜樣品X-ray繞射(下方)(d)為有可能的第二相鉻氧化物
之X-ray繞射(Cr2O3為實線,CrO2 為dashed lines),
和鉻金屬相(dotted lines),(*)代表氧化銦六方晶系結構
相位,(#)代表Al2O3 基板繞射訊號--------------------------------- 18
圖2-18高真空退火(a)塊材(b)薄膜之電阻率與溫度相依曲線----------------------- 19
圖2-19大氣退火M-H曲線與真空退火的M-H和M-T曲線,
(a)為塊材(b)為薄膜--------------------------------------------------------------- 19
圖2-20在YSZ基板上以直接濺鍍和共鍍成長的CIO薄膜之X-ray 繞射------- 21
圖2-21 單靶濺鍍和雙靶共鍍於Si和YSZ基板的CIO薄膜樣品之(a)磁滯曲線和 (b)Hall效應及載子濃度 nc------------------------------------------------------- 22
圖2- 22 CIO:2.8%和CIO:4%薄膜在Si和YSZ基板之飽和磁矩Ms對nc/ni之
分布圖,插圖(a)為晶體結構之ρ-T曲線 (b)為結構缺陷之ρ-T曲線---- 24
圖2-23 (a)非晶相IO、CIO:2.8%和CIO:4%低溫區域ρ-T曲線及擬和的黃色
曲線,中間的插圖是成長於400°C CIO:4%低溫ρ-T曲線。
(b)、(c)和(d) 為各傳輸機制之貢獻比例隨溫度化---------------------------- 25
圖2-24 非晶相CIO磁滯曲線與非晶相CIO:2.8%M-T曲線------------------------- 26
圖2-25非晶相CIO:4% 之(a)不同溫度的載子濃度nc、遷移率μH和平均
自由路徑MFP;(b)不同外加磁場的 ρ-T曲線--------------------------------- 27
圖2- 26 電子由A點擴散至B點分別行經路徑I 、II、 III之示意圖----------- 28
圖2-27圖2-26路徑II 中的O點放大示意圖------------------------------------------ 28
圖2-28束縛磁極化子模型示意圖--------------------------------------------------------- 33
圖2-29 可變程跳躍同心圓模型物理圖像示意圖-------------------------------------- 34
圖2-30 可變程跳躍同心圓模型隨載子濃度變化的磁性與電性之
演化過程示意圖---------------------------------------------------------------------- 35

第三章
圖3-1多靶磁控濺鍍系統外觀圖----------------------------------------------------------- 36
圖3-2 濺鍍系統示意簡圖,圖中為基板加溫旋轉,雙靶共鍍的情況------------- 36
圖3-3典型的射頻濺鍍系統構造示意圖-------------------------------------------------- 37
圖3-4 施加交流電產生正負電位切換之示意圖---------------------------------------- 37
圖3-5 磁控濺鍍鎗內鑲常磁鐵於靶材上產生的磁場分布示意圖------------------- 38
圖3-6 電子於不均勻磁場下產生的螺旋運動軌跡------------------------------------- 38
圖3-7基板清洗流程圖----------------------------------------------------------------------- 40
圖3-8 氧化銦在氫鹵酸中經歷的一系列斷鍵的化學反應---------------------------- 44
圖3-9 微影製板術流程示意簡圖---------------------------------------------------------- 46
圖3-10 X-ray 對晶體繞射示意圖---------------------------------------------------------- 47
圖3-11 Siemens D5000 X-ray繞射儀(a)機台外觀
(b)X-ray繞射儀構造示意圖。----------------------------------------------------- 50
圖3-12 Bede D1 HR-XRD (a)機台外觀 (b) X-ray繞射儀構造示意圖。----------- 50
圖3-13原子與原子間之凡得瓦爾力和距離的關係圖。------------------------------ 51
圖3-14 AFM硬體架構示意圖-------------------------------------------------------------- 52
圖3-15 由兩個Josephson Junction並連而成的超導元件----------------------------- 55
圖3-16 SQUID 電磁感應示意圖-------------------------------------------------------- 56
圖3-17 SQUID量測構造示意圖----------------------------------------------------------- 57
圖3-18樣品位置校正示意圖--------------------------------------------------------------- 57
圖3-19低溫變磁場直流電性量測系統構造示意圖------------------------------------ 59
圖3-20 Hall Bar 四點量測示意圖---------------------------------------------------------- 61
圖3-21 本實驗流程圖。--------------------------------------------------------------------- 63
第四章
圖4-1 CIO 於 400℃Si XRD------------------------------------------------------------- 65
圖4-2 CIO 於 400℃Al2O3 XRD------------------------------------------------------- 65
圖4-3 扣除(222)繞射峰值對背景做線性擬合------------------------------------------ 66
圖4-4以Lorentzian函數擬合(222) peak之XRD-------------------------------------- 67
圖4-5 CIO 於Si基板的氧化銦(222)XRD以Gaussian函數之擬合---------------- 67
圖4-6 CIO 於Al2O3基板的氧化銦(222)XRD以Lorentzian函數之擬合-------- 68
圖4-7 三種鉻摻雜量於Si和Al2O3基板的晶粒大小分布圖----------------------- 69
圖4-8三種鉻摻雜量於Si和Al2O3基板的晶格常數大小分布圖------------------ 70
圖4-9 Al2O3 0%之ρ-T曲線---------------------------------------------------------------- 71
圖4-10 Al2O3 4%之ρ-T曲線--------------------------------------------------------------- 71
圖4-11 Si 0%之ρ-T曲線-------------------------------------------------------------------- 72
圖4-12 Si 4%的ρ-T曲線-------------------------------------------------------------------- 73
圖4-13 Al2O3 2.8% 的變磁場ρ-T曲線-------------------------------------------------- 74
圖4-14 Si 2.8% 的變磁場ρ-T曲線------------------------------------------------------- 75
圖4-15 Si 2.8% 的變磁場ρ-T曲線------------------------------------------------------- 76
圖4-16 Si 2.8% 的室溫霍爾效應---------------------------------------------------------- 76
圖4-17 Al2O3 0%、2.8%和4%室溫M-H曲線----------------------------------------- 78
圖4-18 Si 0%、2.8%和4%室溫M-H曲線----------------------------------------------- 79
圖4-19 摻有鉻之氧化銦薄膜室溫M-H曲線------------------------------------------- 79
圖4-20 摻有鉻之氧化銦薄膜飽和磁化量Ms和
Grain size對不同nc/ni之分布圖------------------------------------------------------ 80
參考文獻 References
參考文獻
[1] H. Chou, C. P. Lin, H. S. Hsu and S. J. Sun ‘‘The role of carriers in spin current and magnetic coupling for ZnO:Co diluted magnetic oxides ’’, Appl. Phys. Lett. 96 , 092503, (2010).
[2] 楊明輝:‘‘透明導電膜’’,藝軒圖書出版社,2006
[3] H. Pan, J. B. Yi, L. Shen, R. Q. Wu, J. H. Yang, J.Y. Lin, Y. P. Feng, J. Ding, L. H. Van, J. H. Yin, ‘‘Room-Temperature Ferromagnetism in Carbon-Doped ZnO’’, Phys. Rev. Lett. 99, 127201 (2007).
[4] A. J. Behan, A. Mokhtari, H. J. Blythe, D. Score, X-H. Xu, J. R. Neal, A. M. Fox, G. A. Gehring, ‘‘Two Magnetic Regimes in Doped ZnO Corresponding to a Dilute Magnetic Semiconductorand a Dilute Magnetic Insulator’’, Phys. Rev. Lett. 100, 047206 (2008).
[5] N. F. Mott and E. A. Davis ‘‘Electronics Processes in Non-Crystalline Materials ’’, 2nd ed, Clarendon Press, Oxford, (1979).
[6] 林伯聰:‘‘二維氧化銦摻雜錫之非彈性電子散射時間及量子干涉傳輸現象之研究’’,國立交通大學物理研究所,2008
[7] Z. R. Xiao, X. F. Fan, L. X. Guan, C. H. A Huan, J. L. Kuo, and L. Wang, ‘‘First-principles study of the magnetization of oxygen-depleted In2O3(001) surfaces’’,
J. Phys.: Condens. Matter. 21, 272202, (2009).
[8] Nguyen Hoa Hong, Joe Sakai, Nathalie Poirot, and Virginie Brizé, ‘‘Room-temperature ferromagnetism observed in undoped semiconducting and insulating oxide thin films’’, Phys. Rev. B 73, 132404 (2006).
[9] Indium(III) oxide, ‘‘http://en.wikipedia.org/wiki/Indium(III)_oxide’’.
[10] 楊孟璇:‘‘低溫濺鍍非晶相ZnO:Al薄膜之研究’’,國立中山大學物理研究所,2009
[11] 洪文進,許登貴,萬明安,郭書瑋,蘇昭瑾,‘‘ITO透明導電薄膜:從發展與應
用到製備與分析’’,CHEMISTRY ( THE CHINESE CHEM.SOC.,TAIPEI ) September.2005 Vol.63, No.3, pp.409~418
[12] Erie. H. Morales, Yunbin. He, Mykoia. Vinnichenko, Bernard. Delley and Ulrike Diebold, ‘‘Surface structure of Sn-doped In2O3 (111) thin films by STM’’, New Journal of Physics, 10 00000 (2008).
[13] G. B. González, T. O. Mason, J. P. Quintana, O. Warschkow, D. E. Ellis, J. -H. Hwang, J. P. Hodges and J. D. Jorgensen, ‘‘Defect structure studies of bulk and nano-indium-tin oxide’’, J. Appl. Phys., 96, 3912 (2004).
[14] M. Marezio, ‘‘Refinement of the crystal structure of In2O3 at two wavelengths’’, Acta Cryst., 20, 723-728, (1966).
[15] David D.Awschalom, Robert A.Buhrman, James M.Daughton, Stephan von Molnár and Michael L.Roukes:‘‘Spin Electronics’’, Kluwer Academic Publishers ,2004.
[16]林政邦:‘‘氧化鋅摻雜鈷之薄膜場效與傳輸機制之研究’’,國立中山大學物理所,2008
[17] M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas ‘‘Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices’’, Phys. Rev. Lett. 61, 2472–2475 (1988).
[18] ] Peleckis. Germanas:‘‘Studies on diluted oxide magnetic semiconductors for spin electronic applications ’’, Ph.D thesis , Institute for Superconducting and Electronic Materials, University of Wollongong, 2006.
[19] 焦正寬,曹光旱:‘‘磁電子學’’,浙江大學出版社,2005
[20] Mukul Agrawl, ‘‘Magnetic Properties of Materials, Diluted Magnetic Semiconductors, Magnetic Resonances and Spintronics’’, http://www.standford .edu/~mukul/tutorials, 42.
[21] H. Ohno, ‘‘Making nonmagnetic semiconductor magnetic’’, Science, 281, 951-956, (1998).
[22] S. Datta and B. Das, ‘‘Electronic analog of the electro-optic modulator’’, Appl. Phys. Lett. 56, 665 (1990).
[23] 許華書:‘‘過渡金屬摻雜氧化鋅室溫鐵磁性之機制研究’’,國立成功大學物理研究所,2006
[24] H. Munekata, H. Ohno, S. von Molnar, Armin Segmüller, L. L. Chang, and L. Esaki ‘‘Diluted magnetic III-V’’, Phys. Rev. Lett. 63, 1849–1852 (1989).
[25] H. Ohno, A. Shen, F. Matsukura, A. Oiwa, A. Endo, S. Katsumoto, and Y. Iye, ‘‘(Ga, Mn)As: A new diluted magnetic semiconductor based on GaAs’’, Appl. Phys. Lett. 69 , 363-365, (1996).
[26] H. Ohno, ‘‘Properties of ferromagnetic III-V semiconductors’’, J. Magn. Magn. Mater. 200, 110-129, (1999).
[27] T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand,, ‘‘Zener model description of ferromagnetism in zinc-blende magnetic semiconductors’’, Science, 287, 1019-1022, (2000).
[28] Yuji Matsumoto, Makoto Murakami, Tomoji Shono, Tetsuya Hasegawa, Tomoteru Fukumura, Masashi Kawasaki, Parhat Ahmet, Toyohiro Chikyow, Shin-ya Koshihara, and Hideomi Koinuma, ‘‘Room-Temperature Ferromagnetism in Transparent Transition Metal-Doped Titanium Dioxide’’, Science, 291, 854-856, (2001).
[28] John Philip, Nikoleta Theodoropoulou, Geetha Berera, Jagadeesh S. Moodera, and Biswarup Satpati, ‘‘High-temperature ferromagnetism in manganese-doped indium–tin oxide films’’, Appl.Phys. Lett. 85 , 777-779, (2004).
[29] Nguyen Hoa Hong, Joe Sakai, Ngo Thu Huong, and Virginie Brizé, ‘‘Room temperature ferromagnetism in laser ablated Ni-doped In2O3 thin films’’, Appl. Phys. Lett. 87 , 102505,(2005).
[30] Nguyen Hoa Hong, Joe Sakai, Ngo Thu Huong, Antoine Ruyter and Virginie Brizé, ‘‘Magnetism in transition-metal-doped In2O3 thin films’’, J. Phys.: Condens. Matter 18 6897–6905 (2006).
[31] J. Philip, A. Punnoose, B. I. Kim, K. M. Reddy, S. Layne, J. O. Holmes, B. Satpati, P. R. LeClair, T. S. Santos and J. S. Moodera, ‘‘ Carrier-controlled ferromagnetism in transparent oxide semiconductor” , Nature Materials 5, 298 - 304 (2006)
[32] P. Kharel, C. Sudakar,a, M. B. Sahana, G. Lawes, R. Suryanarayanan,b, R. Naik, and V. M. Naik, ‘‘ Room temperature ferromagnetism in Cr-doped In2O3 on high vacuum annealing of thin films and bulk samples ” J. Appl. Phys. 101, 09H117 (2007).
[33] C. Y. Hsu, ‘‘ Role of structural disorder in ferromagnetism of chromium-doped indium oxide” J. Phys. D: Appl. Phys. 44 415303 (2011) .
[34] C. P. Lin, C. Y. Hsu, S. J. Sun, and H. Chou, ‘‘ The Kondo effect and carrier transport in amorphous Cr-doped In2O3 thin films” AIP ADVANCES 2, 042186 (2012)
[35] 高屏地區國立中山大學奈米核心設施共同實驗室,‘‘奈米核心設施-儀器設備’’。
[36] M. Scholten and J. E. A. M. van den Meerakker ‘‘On the Mechanism of ITO Etching:
The Specificity of Halogen Acids’’,J.Electrochem.Soc, 140, No.2, (1993).
[37] 曹耀中:‘‘氧化鋅摻鈷之稀磁性氧化物薄膜之成長與物性研究’’,國立中山大學
物理所,2010
[38] 羅吉宗:‘‘薄膜科技與應用’’,修訂二版,全華圖書股份有限公司,2009
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code