Responsive image
博碩士論文 etd-0812113-150916 詳細資訊
Title page for etd-0812113-150916
論文名稱
Title
碳摻雜氧化鋅之碳引致空缺造成的磁性分佈與自旋極化能帶研究
The distribution of magnetism and spin polarized energy band analysis of the vacancies by Carbon inducing for Carbon doped ZnO
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
54
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-08-23
繳交日期
Date of Submission
2013-09-12
關鍵字
Keywords
磁圓偏振二向性、磁性分佈、稀磁性半導體、碳、空缺、氧化鋅
MCD, distribution of magnetism, DMS, ZnO, Carbon, vacancy
統計
Statistics
本論文已被瀏覽 5699 次,被下載 605
The thesis/dissertation has been browsed 5699 times, has been downloaded 605 times.
中文摘要
近年來稀磁性半導體(DMS)在有許多團隊努力下,已慢慢建構起許多與DMS磁性傳輸特性相關之模型並證實,然而對於DMO的磁性分佈的均勻性至今仍是重要的課題,並有研究團隊針對磁性分佈可能性進行研究及探討,提出其磁性分佈是非均勻的,且可能存在於表面缺陷或是晶界處。先前本研究團隊發現碳摻雜氧化鋅在大氣退火後會具有室溫鐵磁性的現象,並猜測其可能是來自於表面的碳與大氣中的氧氣高溫化合後所引致的空缺造成的。
  在本研究中,我們將利用簡易蝕刻的方式對大氣退火處理後的碳摻雜氧化鋅,試著剝除可能存在空缺的膜層。從SQUID的結果發現,在此C:ZnO中並無明顯的鐵磁性存在且呈現反磁性,但是在磁矩變化上依然可以看到蝕刻後的大氣退火C:ZnO較未蝕刻處理的大氣退火C:ZnO來得小,其意指著在大氣退火下確實產生了額外貢獻磁性的媒介。而磁圓偏振二向性光譜(MCD)的MCD-H作圖結果亦符合SQUID量測到之曲線,從MCD的光學吸收譜線一次微分對能量作圖結果中亦發現蝕刻後的大氣退火C:ZnO明顯較未處理的大氣退火C:ZnO減少會存在著一種能貢獻磁性之能態。因此我們更能證實大氣退火的C:ZnO其磁性是來自於表面碳引致的空缺,且磁性分佈確實呈現非均勻分布。
Abstract
Dilute Magnetic Semiconductors (DMSs) have been found and verify in the physical model of transport of magnetic properties for many studies. However, the issue is still important about the distribution of magnetism of Dilute Magnetic Oxide (DMO) and there are many research suppose the distribution of magnetism is non-homogeneous as well as exist in defect of surface or grain boundary. Very recently, We have observed the Room Temperature Ferromagnetism (RTFM) in Carbon doped ZnO of air annealing (AA-C:ZnO) by radio frequency magnetron sputtering. The RTFM may come from the vacancy of surface of the carbon compounds with oxygen in the air annealing.
  In this work, we will remove the possible vacancy of surface layer using a simple etching mothed for C:ZnO of air annealing (AE-C:ZnO) .There is no obvious RTFM in this C:ZnO in SQUID result, but we found the magnetic moment of AE-C:ZnO is smaller than AA-C:ZnO which means that really produce the extra media of contributing magnetism in air annealing. In addition, it’s obviously reduce a density of state which can contribute the magnetism for AA-C:ZnO of the dk/dE result for MCD. Therefore, we more verify the magnetism of AA-C:ZnO come from the vacancy be induced by the carbon of surface and the distribution of magnetism is non-homogeneous.
目次 Table of Contents
目 錄
誌謝……………………………………………………………………..... i
中文摘要…………………………………………………………………. ii
Abstract………………………………………………………………… iii
目錄……………………………………………………………………… iv
圖目錄…………………………………………………………………… vi
表目錄…………………………………………………………………… ix
第一章 緒論……………………………………………………………… 1
1-1 前言……………..…………………………………………………………… 1
1-2 室溫稀磁性氧化物與非磁性離子摻雜…………..………………………… 3
1-3 稀磁性氧化物之磁性分佈………………………………………………….. 5
1-4 文獻回顧…………………………………………………………………….. 6
1-4-1 Room-Temperature Ferromagnetism in Carbon-Doped ZnO…………. 6
1-4-2 Ferromagnetism in Dilute Magnetic Semiconductors through Defect
Engineering:Li-Doped ZnO………………………………………………….. 9
1-4-3 Defect engineering of room-temperature ferromagnetism of carbon doped ZnO………………………………………………………………….. 12
1-4-4 X-Ray Absorption Spectroscopy and X-Ray Magnetic Circular Dichroism Studies of Transition-Metal-Codoped ZnO Nano-Particles……. 14
1-5 研究動機…………………………………………………………………… 19
第二章 基本理論……………………………………………………..… 20
2-1 物質磁性簡介……………………………………………………………… 20
2-2 巡游電子模型 (Itinerant-electron model)…………………………………. 23
2-3 電荷轉移之鐵磁性(Charge-transfer ferromagnetism)…………………….. 26
第三章 實驗方法及儀器簡介………………………………………… 27
3-1 C:ZnO薄膜製備及分析流程…………………………………………….… 27
3-1-1 射頻磁控濺鍍……………………………………………………….. 27
3-1-2 實驗製備…………………………………………………………….. 29
3-2 實驗分析儀器簡介……………………………………………………….... 31
3-2-1磁圓偏振二向性光譜 (Magnetic Circular Dichroism, MCD)……… 31
3-2-2 X光繞射分析 (X-ray Diffraction analysis, XRD)………………….. 32
第四章 研究分析及結果討論………………………………………… 33
4-1 X-ray diffraction (XRD)……………………………………………………. 34
4-2 Atomic Force Microscopy (AFM)………………………………………….. 36
4-3 Superconducting Quantum Interference Device (SQUID)…………………. 37
4-4 Magnetic Circular Dichroism (MCD)……………………………………. 39
第五章 總結……………………………………………………….…... 41
Reference………………………………………………………………… 42
參考文獻 References
[1] Ohno H. Science, 281, 951-956 (1998)
[2] J. M. D. Coey, K. Wongsaprom, J. Alaria, New J. Phys., 41, 134012 (2008)
[3] J. M. D. Coey, P. Stamenov, R. D. Gunning, M. Venkatesan, K. Paul, New J. Phys., 12, 053025 (2010)
[4] M. N. Lin, H. S. Hsu, J. Y. Lai, M. C. Guo, C. Y. Lin, Appl. Phys. Lett., 98, 212509 (2011)
[5] T. Kataoka, Y. Yamazaki, V. R. Singh, and A. Fujimori, F.-H. Chang, H.-J. Lin, D. J. Huang, and C. T. Chen, G. Z. Xing, J. W. Seo, C. Panagopoulos, and T. Wu, Phys. Rev. B., 84, 153203 (2011)
[6] Dietl T, Ohno H, Matsukura F, Cibert J, Ferrand D. Science,287,1019-1022 (2000)
[7] Sato K, Katayama-Yoshida H. Jpn. J. Appl. Phys., 39, L555-L558 (2000)
[8] Sato K, Katayama-Yoshida H. Jpn. J. Appl. Phys., 40, L334-L336 (2001)
[9] Ramachandran S, Tiwari A, Narayan J, Appl. Phys. Lett., 87, 172502 (2005)
[10] Liu H, Zhang X, Li L, Appl. Phys. Lett., 91, 072511 (2007)
[11] O. D. Jayakumar , I. K. Gopalakrish, S. K. Kulshreshtha, Journal of Materials Science, 41, 4706-4712 (2006)
[12] H. Pan, J. B. Yi, L. Shen, R. Q. Wu, J. H. Yang, J. Y. Lin, Y. P. Feng, J. Ding,L. H. Van, J. H. Yin, Phys. Rev. Lett., 99, 127201 (2007)
[13] X. L. Li, J. F. Guo, Z. Y. Quan, X. H. Xu, G. A. Gehring, IEEE T. Magn., 46, 1382-1384
[14] S. Q. Zhou, Q. Y. Xu, K. Potzger, G. Talut, R. Grotzschel, J. Fassbender, M. Vinnichenko, J. Grenzer, M. Helm, H. Hochmuth, M. Lorenz, M. Grundmann, H. Schmidt, Appl. Phys. Lett., 93, 232507 (2008)
[15] J. B. Yi, C. C. Lim, G. Z. Xing, H. M. Fan, L. H. Van, S. L. Huang, K. S. Yang, X. L. Huang, X. B. Qin, B. Y. Wang, T. Wu, L. Wang, H. T. Zhang, X. Y. Gao, T. Liu, A. T. S. Wee, Y. P. Feng, J. Ding, Phys. Rev. Lett., 104, 137201 (2010)
[16] J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, Nature Mater., 4, L173-179 (2005)
[17] C. Zener, Phys. Rev., 81, L440-444 (1951)
[18] C. Zener, Phys. Rev., 82, L403-405 (1951)
[19] H. Chou, C. P. Lin, J. C. A. Huang, H. S. Hsu, Phys. Rev. B., 77, 245210 (2008)
[20] H. S. Hsu, Y. Tung, Y. J. Chen, M. G. Chen, J. S. Lee, and S. J. Sun, Phys. Status Solidi RRL, 1-3,10.1002 (2011)
[21] T. Kataoka, Y. Yamazaki, V. R. Singh, Y. Sakamoto, K. Ishigami, V. K. Verma, and A. Fujimori, e-J. Surf. Sci. Nanotech. Vol. 10 (2012) 594-598
[22] David J. Griffiths, “Introduction of Electrodynamics ,3e”, Prentice Hall.
[23] 李雅明, 固態電子學, 全華出版
[24] F.Bloch, Z. Physik 57,545 (1929)
[25] E.C. Stoner, Phil. Mag. 15,1080 (1933)
[26] Jong-Hyun Seo, J. Korean Phys. Soc. 53, 1 (2008)
[27] W. Roy Mason, “A Practical Guide to Magnetic Circular DichroismSpectroscopy”,Wiley (2007)
[28] M. C. Chiua et al., Thin Solid Films 476, 258 (2005)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code