Responsive image
博碩士論文 etd-0812114-115102 詳細資訊
Title page for etd-0812114-115102
論文名稱
Title
三硝基甲苯污染土壤之生物復育評估
Evaluate the bioremediation of trinitrotoluene contaminated soil
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
78
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-28
繳交日期
Date of Submission
2014-09-12
關鍵字
Keywords
高效液相層析儀、微生態系統、變性膠體電泳、三硝基甲苯、生物復育程式
High performance liquid chromatography (HPLC), Denaturing gradient gel electrophoresis (DGGE), 2, 4, 6-trinitrotoluene (TNT), microcosm, bioremediation
統計
Statistics
本論文已被瀏覽 5719 次,被下載 0
The thesis/dissertation has been browsed 5719 times, has been downloaded 0 times.
中文摘要
三硝基甲苯 (trinitrotoluene;TNT) 在軍事或民間用途上,均為廣泛使用的二級炸藥 (secondary explosive)。在許多環境中可以見到三硝基甲苯的污染,包括火藥製造與儲存廠、試驗以及訓練場所等。目前在TNT污染環境整治上,生物復育法是屬於對環境最友善的技術。本研究首先利用變性梯度膠體電泳 (denaturing gradient gel electrophoresis, DGGE) 對現地微生物菌相進行分析,並針對各菌種之16S DNA進行定序與比對,發現現地污染場址中即含有具有降解TNT能力之微生物。故利用TNT當作唯一氮源,針對TNT污染場址現地的原生菌進行篩選,共篩選出Achromobacter sp. 和Klebsiella sp. 2株可利用TNT為唯一氮源而生長的微生物,並進一步探討其在降解TNT污染土壤生物復育之可行性。實驗主要係採用好氧微生態系統 (aerobic microcosm) 方式,將2株菌種混合以不同批次實驗分別進行 (basal salt medium, BSM)及 (nitrogen free glucose salt medium, NFG) 兩種不同葡萄糖濃度培養基培養之降解TNT效率評估並利用HPLC監測最後TNT降解之產物。結果顯示在含葡萄糖濃度0.009% 之BSM培養基中好氧微生態系統進行第9天後,TNT降解率達到20%。而在含0.8%葡萄糖濃度之NFG培養基中微生態系統在第2天即可將TNT降解完畢,並可在HPLC偵測中發現4-amino-2,6-dinitrotoluene (4-A-2,6-DNT) 及 2-amino-4,6-dinitrotoluene (2-A-4,6-DNT)等代謝副產物。
Abstract
The 2,4,6-trinitrotoluene (TNT) is a secondary explosive widely used in military and civil purposes all over the world. Residual TNT had been found in contaminated soil and groundwater mainly releasing from manufacturing or demilitarization facilities. Bioremediation of using microbial degradation is a very promising technique to treat environmental pollution problems. In this study, polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) was used to analyze the microbial communities of a TNT polluted site. Two TNT degrading bacteria, Achromobacter sp. and Klebsiella sp. were isolated from the soils that could use TNT as the sole nitrogen source for their growth. Aerobic microcosm studies were conducted using these two bacteria to assess the effectiveness of removal TNT from contaminated soil. Both basal salt medium (BSM) and nitrogen free glucose (NFG) medium mixed with TNT were added into the experimented microcosms. Results show that approximately 20% of TNT was removed in microcosms with BSM medium after 9 days of incubation. Complete TNT removal was observed in microcosms using NFG as the medium. Moreover, The TNT degradation by-products, 4-amino-2,6-dinitrotoluene (4-A-2,6-DNT) and 2-amino-4,6-dinitrotoluene (2-A-4,6-DNT) were detected in the microcosms.
目次 Table of Contents
論文審定書....................................................................................................i
誌謝...............................................................................................................ii
摘要..............................................................................................................iii
Abstract………………………………………………………………...….iv
目錄..............................................................................................................vi
圖目錄..........................................................................................................ix
表目錄...........................................................................................................x
第一章 前言……………………………………………………………….1
1.1 三硝基甲苯之特性............................................................................1
1.2 三硝基甲苯之健康危害....................................................................4
1.3 三硝基甲苯汙染物之處理方法........................................................7
1.3.1 物理處理法.................................................................................7
1.3.2 化學處理法.................................................................................8
1.3.3 生物處理法.................................................................................8
1.4 三硝基甲苯生物性分解研究..........................................................12
1.4.1 好氧降解...................................................................................12
1.4.2 厭氧降解...................................................................................14
1.5 分子生物技術檢測..........................................................................15
1.5.1 16S rDNA應用..........................................................................15
1.5.2 DGGE於菌相上之分析............................................................16
1.6 微生態系統(microcosm)研究.........................................................16
1.7 研究目的............................................................................................17
第二章 材料與方法...................................................................................18
2.1 三硝基甲苯污染場址菌相評估......................................................18
2.1.1 三硝基甲苯污染土壤之微生物DNA萃取............................18
2.1.2 聚合酶連鎖反應.......................................................................19
2.1.3 DGGE………………………………………………......……20
2.1.4 定序...........................................................................................21
2.1.4.1 agarose切膠及純化…………………………………….21
2.1.4.2 Ligation…………………………………………………22
2.1.4.3 Transformation………………………………………….22
2.1.4.4 Clone菌株確認及篩選…………………………………23
2.1.4.5 定序鑑定比對…………………………………………..23
2.2 三硝基污染土壤之菌株篩選..........................................................24
2.2.1 不同三硝基甲苯濃度培養基配置...........................................24
2.2.2不同三硝基甲苯濃度篩選出的菌種鑑定................................24
2.3微生態系統( microcosm)批次降解實驗..........................................25
2.3.1微生態系統培養基配置............................................................26
2.3.2分析方法:高效液相層析儀(High-Performance Liquid
Chromatography,HPLC) 偵測.........................................................27
2.3.3微生態系統( microcosm)菌數變化…………………………...28
2.4微生態系統( microcosm) DGGE菌相監測……………..…..…….29
第三章 結果與討論...................................................................................30
3.1 三硝基甲苯污染場址菌相分析......................................................30
3.1.1 場址中微生物菌相分析……………………………………...30
3.1.2場址中微生物組成……………………………………………31
3.2三硝基甲苯污染土壤之菌株篩選...................................................32
3.3微生態系統( microcosm)批次降解實驗..........................................32
3.3.1 BSM微生態組…………………………………………….......32
3.3.1.1 BSM微生態組-代謝產物……………………………….34
3.3.1.2 BSM微生態組-DGGE菌相…………………………….35
3.3.2 NFG 微生態組………………………………………………..36
3.3.2.1 NFG 微生態組-代謝產物……………………………....37
第四章 結論與建議...................................................................................38
參考文獻.....................................................................................................41
圖表.............................................................................................................50
附件……………………………………………………………………….64
參考文獻 References
石東生、劉紹興、朱紀洪 (2006),火炸藥勞工健康及暴露調查研究。行政院勞工委員會勞工安全衛生研究所研究報告。
行政院環保署 (2011),火炸藥物質檢測方法-高效液相層析儀/紫外光 偵測器法。
林耀東,張進福 (2010),土壤中火炸藥污染先端整治方法報告。2年世界公民人權高峰會。勞動部勞動及職業安全衛生研究所(2000),物質安全資料表
黃顏良 (2008),二氧化鈦/超音波應用於TNT製程廢水中有機物之去除。碩士論文。國立雲林科技大學化學工程與材料工程系碩士班碩士論文。
簡志青 (2012),三硝基甲苯污染土壤菌株種類之探討與具降解三硝基甲苯潛力菌株之篩選與開發。行政院環境保護署「100年度土壤及 地下水污染研究與技術提昇計畫」
賴俊清 (2010),超音波應用於活性碳吸附硝基甲苯之降解。碩士論文。 國立雲林科技大學化學工程與材料工程系碩士班碩士論文。
Ahlborg G.J., Einisto P., Sorsa M. (1998) Mutagenic activity and metabolites in the urine of workers exposed to trinitrotoluene (TNT) . Br J Ind Med; 45: 353-358.
Alnaiz R., Akgerman A. (1999) Oxidative treatment of high explosives contaminated wastewater. Water Res; 33: 2021-2030.
Brooks L.R., Jacobson R.W., Warren1 S.H., Kohan M.J., Donnelly K.C., George S.E. (1997) Mutagenicity of HPLC-fractionated urinary metabolites from 2,4,6-trinitrotoluene-treated Fischer 344 rats. Environ Mol Mutagen; 30: 298-302

Boopathy R., Kulpa C. F., Wilson M. (1993) Metabolism of 2,4,6-trinitrotoluene (TNT) by Desulfovibrio sp. (B strain) . Appl Microbiol Biotechnol; 39: 270-275
Boopathy R., Manning J., Kulpa C.F. (1998) A Laboratory Study of the Bioremediation of 2,4,6-trinitrotoluene-contaminated Soil Using Aerobic/Anoxic Soil Slurry Reactor. Water Environ Res; 70: 80-86
Boopathy R. (2000) Bioremediation of explosives contaminated soil. Int Biodeter Biodegr; 46: 29-36
Bradley P.M., Chapelle F.H. (1995) Rapid Toluene Mineralization by Aquifer Microorganisms at Adak, Alaska: Implications for Intrinsic Bioremediation in Cold Environments. Environ Sci Technol; 29: 2778-2781
Bier E.L., Singh J., Li Z., Comfort S.D., Shea P.J. (1999) Fenton oxidation of hexahydro-ating hexahydro-1,3,5-trinitro-1,3,5-triazine-contaminated water and soil by Fenton oxidation. Environ Toxicol Chem;18: 1078-1084
Claus H., Bausinger T., Lehmler I., Perret N., Fels G., Dehner U., Preuß J., König H. (2007) Transformation of 2,4,6-trinitrotoluene (TNT) by Raoultella terrigena. Biodegradation; 18: 27-35
Copley S.D. (2009) Evolution of Efficient Pathways for Degradation of Anthropogenic Chemicals. Nat Chem Biol; 5: 559-566
Dimitrios K., Albert L.J., Raj B., Steve C. (2011) Soils contaminated with explosives:Environmental fate and evaluation of state of the art remediation processes (IUPAC Technical Report) . Pure Appl Chem; 83: 1407-1484
Donnelly K.C., Chen J.C., Huebner H.J., Brown K.W., Autenrieth R.L., Bonner J.S. (1997) Utility of four strains of white rot fungi for the detoxification of 2,4,6-trinitrotoluene in liquid cultures. Environ Tox Chem; 16: 1105-1110
Esteve-Núñez A., Caballero A., Ramos J.L. (2001) Biological degradation of 2,4,6-trinitrotoluene. Microbiol Mol Biol Rev; 65: 335
French C.E., Nicklin S., Bruce N.C. (1998) Aerobic degradation of 2,4,6-trinitrotoluene by Enterobacter cloacae PB2 and a pentaerythitol tetranitrate reductase. Appl Environ Microbiol; 64: 2864-2868
Gilcrease P.C., Murphy V.G. (1995) Bioconversion of 2,4-diamino-6-nitrotoluene to a novel metabolite under anoxic and aerobic conditions. Appl Environ Microbiol; 61: 4209-4214
Grenni P., Falconi F., Caracciolo A.B. (2012) Microcosm Experiments for Evaluating Natural Bioremediation of Contaminated Ecosystems. Chem Eng Trans; 28: 7-12
Huang S., Lindahl P.A., Wang C., Bennett G.N., Rudolph F.B., Hughes J.B. (2000) 2,4,6-Trinitrotoluene reduction by carbon monoxide dehydrogenase from Clostridium thermoaceticum. Appl Environ Microbiol; 66: 1474-1478
Hawari J., Halasz A., Sheremata T., Beaudet S., Groom C., Paquet L., Rhofir C., Ampleman G., Thiboutot S. (2000) Characterization of metabolites during biodegradation of hexahydro-1, 3,5-trinitro-1,3,5-triazine (RDX) with municipal anaerobic sludge. Appl Environ Microbiol; 66: 2652-2657
Hughes J.B., Shanks M., Vanderford J., Lauritzen, Bhadra R. (1997) Transformation of TNT by aquatic plants and plant tissue cultures. Envlron Sic Technol; 31: 266-271
Kao C.M. and Prosser J. (1999) Intrinsic bioremediation of trichloroethene and chlorobenzene: field and laboratory studies. J Hazard Mater; 69: 67-79
Kao C.M., Chen S.C., Liu J.K., Wang Y.S. (2001) Application of microbial enumeration technique to evaluate the occurrence of natural bioremediation. Water Ees;35: 1951-1960
Kalderis D., Juhasz A.L., Boopathy R., Comfort S. (2011) Soils contaminated with explosives: environmental fate and evaluation of state-of-the-art remediation processes, Pure Appl Chem ; 83: 1407-1484
Kaplan D.L., Kaplan A.M. (1982) Mutagenicity of 2,4,6-trinitrotoluene-surfactant complexes. Bull Environ Contam Toxicol; 28: 33-38

Liu Y.Y., Fang J.L., Wang Y.W. (1995) Monitoring human risk and exposure to trinitrotoluene using haemoglobin adducts as biomarkers. Toxicol Lett; 77: 281-287
Liu J.K., Liu C.H., Lin C.S. (1992) Physiological adaptability of a cyanide-utilizing Klebsiella oxytoca strain. Proc Natl Sci Counc Repub China B; 16: 188-193
Li X.Z., Zhang L., Poole K. (1998) Role of the multidrug efflux systems of Pseudomonas aeruginosa in organic solvent tolerance. J Bacteriol; 180: 2987-2991
Muyzer G., Waal E.C., Uitterlinden A.G. (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes encoding for 16S rRNA. Appl Environ Microbiol; 59: 695-700
Manson J.M., Rauch M., Gilmore M.S. (2008) The commensal microbiology of the gastrointestinal tract. Gi Microbiota and Regulation of the Immune System. Berlin: Springer-Verlag; P:15-28
McCormick P.T., Michelson P.F., Pettibone D.W., Whitten R.C. (1976) On the energy deposition of photoelectrons in the atmosphere of Venus. J Geophys Res; 81: 0148-0227
Michels J., Gottschalk G. (1995) Pathway of 2,4,6-trinitrotoluene (TNT) degradation by Phanerochaete chrysosporium. In: Spain JC, editor. Biodegradation of nitroaromatic compounds.
Maeda T., Kadakani K., Ogawa H.I. (2006) Characterization of 2,4,6-Trinitrotoluene (TNT) metabolizing bacteria isolated from THT-polluted soils in the Yamada Green Zone, Kitakyushu, Japan. J Environ Biotechnol ; 1: 33-39
Oh B.T., Sarath G., Shea P.J. (2001) TNT nitroreductase from a Pseudomonas aeruginosa strain isolated from TNT-contaminated soil. Soil Biol Biochem; 33: 875-881
Okeke B.C., Smith J.E., Paterson A., Watson-Craik I.A. (1996) Influence of environmental parameters on pentachlorophenol biotransformation in soil by Lentinula edodes and Phanerochaete chrysosporium. Appl Microbiol Biotech; 45: 263-266
Pennington J.C., Brannon J.M. (2002) Environmental fate of explosives. Thermochimica Acta; 384: 163-172.
Paca J., Haleckya M., Bartaa J., Bajpai R. (2008) Aerobic biodegradation of 2,4-DNT and 2,6-DNT: Performance characteristics and biofilm composition changes in continuous packed-bed bioreactors. J Hazard Mater; 163: 848-854
Rahal A.G., Lobna A.M. (2011) Degradation of 2,4,6-Trinitrotoluene (TNT) by Soil Bacteria Isolated From TNT Contaminated Soil. Australian Journal Of Basic AN; 5: 8-17
Ramos J.L. (2005) Bioremediation of polynitrated aromaticcompounds: plants and microbes put up a fight. Curr OpinBiotechnol ; 16: 275-281
Sabbioni G., Wei J., Liu Y.Y. (1996) Determination of hemoglobin adducts in works exposed to 2,4,6-trinitrotoluene. J Chromatogr B; 486: 243-248
Sabbioni G., Liu Y.Y., Yan H. and Sepai O. (2005) Hemoglobin adducts urinary metabolites and health effects in 2,4,6-trinitrotoluene exposed workers. Carcinogenesis; 26: 1272-1279
Steevens J.A., Duke B.M., Lotufo G.R., Bridges T.S., (2002) Toxicity of the explosives 2,4,6-trinitrotoluene, hexahydro-1,3,5-trinitro-1,3,5-triazine and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine in sediments to Chironomus tentans and Hyalella azteca: low-dose hormesis and high-dose mortality. Environ Toxicol Chem; 59: 1475-1482
Stenuit B.A., Agathos S.N. (2010) Microbial 2,4,6-trinitrotoluene degradation: Could we learn from (bio) chemistry for bioremediation and vice versa?. Appl microbiol Biotechnol; 88: 1043-1064.
Spain, J.C. (1995) Biodegradation of nitroaromatic compounds. Annu Rev Microbiol; 49: 523-555
Stahl J.D., Aust S.D. (1995) Biodegradation of 2,4,6-trinitrotoluene by whiterot fungus Phanerochaete chrysosporium. In: Spain JC (ed) Biodegradation of nitroaromaic compounds. Plenum Press; 117-131
Sarah J.M., Stephen J.R.,Venosa A.D., Davis G.A., Chang Y.j., White D.C. (1999) Microbial population changes during bioremediation of an experimental oil spil. Appl Environ Microbiol; 65: 3566-3574
Singh B., Kaur J., Singh K. (2012) Microbial remediation of explosive waste. Crit Rev Microbiol; 38: 152-167
Tharakan J.P., Gordon J.A. (1999) Cometabolic biotransformation of Cometabolic biotransformation of (TNT) supported by using aromatic and non-aromatic cosubstrates. Chemosphere; 38: 1323-1330
Torsvik V., Sorheim R., Goksoyr J. (1996) Total bacterial diversity in soil and sediment communities – a review. J Ind Microbiol; 17: 170-178
Travis E.R., Bruce N.C., Rosser S.J. (2008) Microbial and plant ecology of a long-term TNT-contaminated site. Environmental Pollution; 153: 119-126
Vorbeck C., Lenke H., Fischer P., Spain J.C., Knackmuss H.J. (1998) Initial reductive reactions in aerobic microbial metabolism of 2,4,6-trinitro-toluene. Appl Environ Microbiol; 64: 246-252
Vorbeck C, Lenke H, Fischer P, Knackmuss H.J. (1994) Identification of a hydride-Meisenheimer complex as a metabolite of 2,4,6-trinitrotoluene by a Mycobacterium strain. J Bacteriol; 176: 932-934.
Van Aken B., Hofrichter M., Scheibner K., Hatakka AI., Naveau H., Agathos SN. (1999) Transformation and mineralization of 2,4,6-trinitrotoluene (TNT) by manganese peroxidase from the white-rot basidiomycete Phlebia radiata. Biodegradation;10: 83-91.
Van Elsas J.D., Duarte G.F., Rosado A.S., Smalla K. (1998) Microbiological and molecular biological methods for monitoring microbial inoculants and their effects in the soil environment. J Microbiol meth; 32; 133-154.
Vaughan E.E., Schut F., Heilig H.G., Zoetendal E.G., de Vos W.M., Akkermans A.D. (2000) A molecular view of the intestinal ecosystem. Curr Issues Intest Microbiol; 1: 1-12
Wujcik W.J., Lowe W.L., Marks P.J., Sisk W.E. (1992) Activated carbon pilot treatment for explosives removal from contaminated groundwatert. Environ Prog; 11: 178-189
Wanaratna P., Christodoulatos C., Sidhoum M. (2006) Kinetics of RDX degradation byzero-valent iron (ZVI). J Hazard Mater;136: 68-74
Wang Z., Ye Z., Zhang M., Bai X. (2010) Degradation of 2,4,6-trinitrotoluene (TNT) by immobilized microorganism-biological filter. Process Biochem; 45 : 993-1001
Widrig D.L., Boopathy R., Manning J. (1997) Bioremediation of TNT-contaminated soil: A laboratory study. Environ Toxicol Chem; 16: 1141-1148
Ward D.M., Weller R., Bateson M.M. (1990) 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature; 345: 63-5
Ziganshin A.M., Gerlach R.P., Naumenko E., Naumova R. (2010)“Aerobic degradation of 2,4,6-trinitrotoluene by the yeast strain Geotrichum candidum AN-Z4.”Microbiol; 79: 178-183
Zhao F.J., McGrath S.P., (2009) Biofortification and phytoremediation. Current Opinion in Plant Biology; 12: 373-380
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.14.250.117
論文開放下載的時間是 校外不公開

Your IP address is 3.14.250.117
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code