Responsive image
博碩士論文 etd-0812114-130535 詳細資訊
Title page for etd-0812114-130535
論文名稱
Title
耐輻射奇異球菌在不同培養條件下之胞色素氧化酶系統分析
Analysis of the cytochrome oxidase system in Deinococcus radiodurans under different culture conditions
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
113
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-28
繳交日期
Date of Submission
2014-09-12
關鍵字
Keywords
胞色素氧化酶活性、胞色素組成成份、四甲基對苯二胺、錳促細胞生長效、耐輻射奇異球菌、胞色素c
oxidizing enzyme activity, cytochrome c, TMPD, cytochrome constituent, Mn-CD effect, D. radiodurans
統計
Statistics
本論文已被瀏覽 5714 次,被下載 592
The thesis/dissertation has been browsed 5714 times, has been downloaded 592 times.
中文摘要
耐輻射奇異球菌是一株革蘭氏陽性、具有高度耐輻射能力之四聯球菌。當耐輻射奇異球菌生長至靜止期時,在培養液內添加2.5 µM的二價錳離子則會誘發細胞再次生長的情形,稱之為錳促細胞生長 (Mn (Ⅱ)-induced Cell Division, Mn-CD)效應。本研究主要是分析在不同培養條件下添加二價錳離子之胞色素氧化酶活性 (oxidizing enzyme activity)以及胞色素組成成份 (cytochrome constituent),以進一步瞭解此菌生產能量的途徑與效率。結果顯示將耐輻射奇異球菌培養在TY (每100毫升含0.5 g tryptone以及0.3 g yeast extract)、TGY (每100毫升含0.5 g tryptone、0.3 g yeast extract以及0.1 g D (+)-glucose)、TFY (每100毫升含0.5 g tryptone、0.3 g yeast extract以及0.1 g D-fructose)培養液內皆能夠生長,其中又以培養在TFY培養液內的生長情形最佳。Mn-CD效應的發生並不限定在特定時期的細胞,而是與其細胞的年齡有關。在四甲基對苯二胺 (N, N, N’, N’-tetramethyl-p-phenylenediamine,TMPD)氧化酶活性分析方面,可以發現到培養在TGY和TY 培養液的結果是比較相似的,皆為對數生長初期的比活性最高,靜止期的比活性最低。不過,培養在TFY培養液的結果卻與前兩組有所不同,為對數生長中期的比活性是最高的。三種培養液皆培養在不加錳的組別,在對數生長初期、對數生長中期以及靜止期的比活性皆差異不大。三種培養液皆培養在0小時加錳的組別,對數生長初期時以培養在TY培養液的比活性是最高的,靜止期時三種培養液比活性有最為明顯的下降。三種培養基皆培養在18小時加錳的組別,對數生長中期時以培養TFY培養液的比活性是最高的,靜止期時三種培養液比活性有最為明顯的下降。因此認為在加入錳離子後,一旦細胞進入靜止期後對於氧化酶會有顯著的影響。在胞色素成份分析方面,發現到本菌無論在TY、TGY或是TFY培養下,細胞均具有胞色素a1、a+a3、b、c、c+c1以及o。但各成份的含量則隨培養條件不同而有所差異。然而分析胞色素氧化酶的比活性與胞色素c之含量,發現兩者並無明顯的相關性,與預期結果有所不同,其原因有待更進一步的研究探討。
Abstract
Deinococcus radiodurans is a highly radioresistant Gram-positive tetrad. Previously studies show that the addition of 2.5 μM of manganese (Ⅱ) into a stationary phase culture could trigger a new cycle of cell division (Mn-CD effect). In this study, we analyzed the cytochrome oxidase system in D. radiodurans under different culture conditions with the addition of manganese (Ⅱ) to further understand the pathway and efficiency of energy production. Results show that D. radiodurans grew well in all TY (per 100 ml containing 0.5 g tryptone and 0.3 g yeast extract), TGY (per 100 ml containing 0.5 g tryptone, 0.3 g yeast extract and 0.1 g D (+)-glucose), and TFY medium (per 100 ml containing 0.5 g tryptone, 0.3 g yeast extract and 0.1 g D-fructose). In which, the TFY medium provided the best nutrients for D. radiodurans to grow. The occurance of Mn-CD effect is related to the age of cells. The N, N, N ', N'-tetramethyl-p-phenylenediamine (TMPD), oxidase activities were found to be similiar in both TY and TGY grown cells. Both cells had the highest specific activity in the early log phase and the lowest specific activity in the stationary phase. However, the TFY medium grown cells were different, which performed the highest specific activity in the mid log phase. The specific activities of the Mn (Ⅱ)-free cells in all three media were found to be similiar, no matter in the early log phase, the mid log phase, and the stationary phase. For the cells with the addition of Mn (Ⅱ) from the beginning of cultivation, TY medium cells shew the highest specific activity in the early log phase, but decreased significantly in the stationary phase. For the cells with the addition of Mn (Ⅱ) to the eighteenth hour cultures, the TFY medium cells shew the highest specific activity in the mid log phase, but decreased significantly in the stationary phase. Therefore, the addition of Mn (Ⅱ) had a drastically effect to the TMPD specific activity during stationary phase. All D. radiodurans cells possessed cytochrome a1, a+a3, b, c, c+c1, and o, no matter cultured in the TY, TGY, or TFY medium. However, the content of each component, were various with different culture conditions. Results also show that the TMPD oxidase activity was not related to the amount of cytochrome c, which was different from previous literatures and need further study.
目次 Table of Contents
論文審定書 .i
致謝 ii
中 文 摘 要 iii
英 文 摘 要 iv
圖 目 錄 vi
表 目 錄 ix
壹、 前言 1
1.1 耐輻射奇異球菌之基本介紹 1
1.1.1 耐輻射奇異球菌的發現與分類命名 1
1.1.2 耐輻射奇異球菌的特性 2
1.1.3 耐輻射奇異球菌的基因 3
1.1.4 耐輻射奇異球菌的分佈 3
1.1.5 耐輻射奇異球菌的耐輻射能力 4
1.1.6 耐輻射奇異球菌的Mn-CD效應以及salt-mediated multi cell formation 6
1.1.7 耐輻射奇異球菌的能量代謝途徑 8
1.1.8 耐輻射奇異球菌對醣類的需求 11
1.1.9 耐輻射奇異球菌的環境應用 13
1.2 研究目標 14
貳、 材料與方法 15
2.1 菌種及來源 15
2.2 培養液與藥品 15
2.3 實驗方法 15
2.3.1 生長曲線 15
2.3.2 Mn-CD effect 16
2.3.3 氧化酶活性測試 16
2.3.3.1 不同培養液之菌液配養 16
2.3.3.2 TMPD胞色素氧化酶測試 17
2.3.4 三種不同培養液之生長曲線 18
2.3.5 胞色素組成成分分析 18
2.3.5.1 菌液培養 18
2.3.5.2 打破細胞 19
2.3.5.3 分離細胞膜 19
2.3.5.4 均質化 19
2.3.5.5 蛋白質定量 20
2.3.5.6 胞色素分析 20
參、 結果與討論 22
3.1 耐輻射奇異球菌的生長曲線和Mn-CD效應的情形 22
3.2 耐輻射奇異球菌的氧化酶活性測試 26
3.3 耐輻射奇異球菌的胞色素組成成分分析 30
3.4 氧化酶活性測試v.s.胞色素組成成分分析 32
肆、 結論與建議 35
伍、 參考文獻 37
陸、 圖 52
捌、 表 91
參考文獻 References
1. 王秀琴,1996,錳離子對耐輻射奇異球菌DNA聚合酵酶基因上環丁烷嘧啶雙元體移除效率之影響。碩士論文。國立中山大學生物科學系碩士班。
2. 李孟芝,1999,耐輻射奇異球菌果糖雙磷酸醛縮酶之特性探討與部份純化。碩士論文。國立中山大學生物科學系碩士班。
3. 李慧瑜,2014,耐輻射奇異球菌果糖攝取系統及生長抑制因子之研究。博士論文。國立中山大學生物科學系博士班。
4. 陳君麟,2000,探討各種單醣與雙醣對耐輻射奇異球菌生長的影響。碩士論文。國立中山大學生物科學系碩士班。
5. 陳冠妏,2003,耐輻射奇異球菌果醣雙磷酸醛縮酶基因之選殖、表現、純化與特性分析。碩士論文。國立中山大學生物科學系碩士班。
6. 陳麗瑛,1995,二價金屬離子對抗輻射奇異球菌醣類代謝的影響。碩士論文。國立中山大學生物科學系碩士班。
7. 黃冠倫,2004,以錳離子誘導耐輻射奇異球菌基因表現之研究。碩士論文。國立中山大學生物科學系碩士班。
8. 黃威球,1998,耐輻射奇異球菌的醣類代謝。碩士論文。國立中山大學生物科學系碩士班。
9. 劉友章、王昌俊、周俊亮、劉靜、劉兆周、歐志穗、金友,2006,四君子湯修復脾虛大鼠線粒體細胞色素氧化酶的作用及機制。中國臨床康復。第10卷。第35期。
10. 薛雅兆,2000,錳離子對耐輻射奇異球菌葡萄醣代謝路徑走向的影響。碩士論文。國立中山大學生物科學系碩士班。
11. 顏孟畿,2002,錳離子對耐輻射奇異球菌DNA修補原料及能量供應的影響。碩士論文。國立中山大學生物科學系碩士班。
12. Anderson, A. W., Nordon, H. C., Cain, R. F., Parrish, G. and Duggan, D.. 1956. Studies on a radio-resistant micrococcus. I. Isolation, morphology, cultural characteristics, and resistance to gamma radiation. Food Technology. 10 : 575-577.
13. Battista, J. R., Cox, M. M., Daly, M. J., Narumi, I., Radman, M., and Sommer, S.. 2003. The structure of D. radiodurans. Science. 302(5645) : 567-568.
14. Battista, J. R., Eral, A. M., and Park, M. J.. 1999. Why is Deinococcus radiodurans so resistant to ionizing radiation?. Trends Microbiol. 7(9) : 362-365.
15. Battista, J. R.. 1997. Against all odds: the survival strategies of Deinococcus radiodurans. Annu Rev Microbiol. 51 : 203-224.
16. Baumeister, W., Barth, M., Hegerl, R., Guckenberger, R., Hahn, M., and Saxton, W. O.. 1986. Three-dimensional structure of the regular surface layer (HPI layer) of Deinococcus radiodurans. J Mol Biol. 187(2) : 241-250.
17. Berry, E. A., and Trumpower, B. L.. 1987. Simultaneous determination of hemes a, b, and c from pyridine hemochrome spectra. Anal Biochem. 161(1) : 1-15.
18. Brim, H., McFarlan, S. C., Fredrickson, J. K., Minton, K. W., Zhai, M., Wackett, L. P., and Daly, M. J.. 2000. Engineering Deinococcus radiodurans for metal remediation in radioactive mixed waste environments. Nat Biotechnol. 18(1) : 85-90.
19. Brim, H., Venkateswaran, A., Kostandarithes, H. M., Fredrickson, J. K., and Daly, M. J.. 2003. Engineering Deinococcus geothermalis for bioremediation of high-temperature radioactive waste environments. Appl Environ Microbiol. 69(8) : 4575-4582.
20. Brooks, B. W. and Murray, R. G. E.. 1981. Nomenclature for “Micrococcus radiodurans” and other radiation resistant cocci: Deinococcaceae fam. nov. and Deinococcus gen. nov., including five species. Int J Syst Bacteriol. 31 : 353-360.
21. Brooks, B. W., Murray, R. G. E., Johnson, J. L., Stackebrandt, E., Woese, C. R., and Fox, G. E.. 1980. Red-pigmented Micrococci: a basis for taxonomy. Int J Syst Bacteriol. 30 : 627-646.
22. Carbonneau, M. A., Melin, A. M., Perromat, A., and Clerc, M.. 1989. The action of free radicals on Deinococcus radiodurans carotenoids. Arch Biochem Biophys. 275(1) : 244-251.
23. Carbonneau, M. A., Rebeyrotte, N., and Rebeyrotte, P.. 1984. Polar lipids from the radiation resistant bacterium Deinococcus radiodurans : structural investigations on glucosaminyl and N-acetyl glucosaminyl lipids. Biochimie. 66(4) : 319-330.
24. Chan, W. F., and O’Toole, D. K.. 1999. Isolation of Deinococcus species from commercial oyster extract. Appl Environ Microbiol. 65(2) : 846-848.
25. Chena, S. C., and Liu, J. K.. 1999. The respiratory responses to cyanide of a cyanide-resistant Klebsiella oxytoca bacterial strain. FEMS Microbiol Lett. 175(1) : 37-43.
26. Cheng, J., Zhang. Z., Zheng, Z., Lv, G., Wang, L., Tian, B., and Hua, Y.. 2014. Antioxidative and hepatoprotective activities of deinoxanthin-rich extract from Deinococcus radiodurans R1 against carbon tetrachloride-induced liver injury in mice. Tro J Pharm Res. 13(4) : 573-580.
27. Chou, F. I., and Tan, S. T.. 1990. Manganese(II) induces cell division and increases in superoxide dismutase and catalase activities in an aging Deinococcal culture. J Bacteriol. 172(4) : 2029-2035.
28. Chou, F. I., and Tan, S. T.. 1991. Salt-mediated multicell formation in Deinococcus radiodurans. J Bacteriol. 173(10) : 3184-3190.
29. Counsell, T. J., and Murray, R. G. E.. 1986. Polar lipid profiles of the genus Deinococcus. Int J Syst Bacteriol. 36 : 202-206.
30. Daly, M. J., and Minton, K. W.. 1995. Resistance to radiation. Science. 270(5240) : 1318.
31. Daly, M. J., Ling, O., and Minton, K. W.. 1994. Interplasmidic recombination following irradiation of the radioresistant bacterium Deinococcus radiodurans. J Bacteriol. 176(24) : 7506-7515.
32. Daly, M. J., Ouyang, L., Fuchs, P., and Minton, K. W.. 1994. In vivo damage and recA-dependent repair of plasmid and chromosomal DNA in the radiation-resistant bacterium Deinococcus radiodurans. J Bacteriol. 176(12) : 3508-3517.
33. Davis, N. S., Silverman, G. J., and Masurovsky, E. B.. 1963. Radiation-resistant, pigmented coccus isolated from haddock tissue. J Bacterol. 86 : 294-298.
34. De Vrij, W., Van den Burg, B., and Konings, W. N.. 1987. Spectral and potentiometric analysis of cytochromes from Bacillus subtilis. Eur J Biochem. 166(3) : 589-595.
35. Dispirito, A. A., Lipscomb, J. D., and Lidstrom, M. E.. 1990. Soluble cytochromes from the marine methanotroph Methylomonas sp. Strain A4. J Bacteriol. 172(9) : 5360-5367.
36. Dobrogosz, W. J. 1981. Enzymatic activity. In Gerhardt, Murray, Costilow, Nester, Wood, Krieg, and Phillips, Eds,. Manual of Methods of General Bacteriology.
37. Duggan, D. E., Anderson, A. W., Elliker, P. R., and Cain, R. F.. 1959. Ultraviolet exposure studies on a gamma radiation resistant Micrococcus isolated from food. J Food Sci. 24 : 376-382.
38. Ferreira, A. C., Nobre, M. F., Rainey, F. A., Silva, M. T., Wait, R., Burghardt, J., Chung, A. P., and da Costa, M. S.. 1997. Deinococcus geothermalis sp. nov. and Deinococcus murrayi sp. nov., two extremely radiation-resistant and slightly thermophilic species from hot springs. Int J Syst Bacteriol. 47(4) : 939-947.
39. Fox, C. F., and Wesis, S. B.. 1964. Enzymatic synthesis of ribonucleic acid. II. properties of the deoxyribonucleic acid-primed reaction with Micrococcus lysodeikticus ribonucleic acid polymerase. J Biol Chem. 239 : 175-185.
40. Gorg, A., Obermaier, C., Boguth, G., Harder, A., Scheibe, B., Wildgruber, R., and Weiss, W.. 2000. The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis. 21(6) : 1037-1053.
41. Gutman, P. D., Fuchs, P., Ouyang, L., and Minton, K. W.. 1993. Identification, sequencing, and targeted mutagenesis of a DNA polymerase gene required for the extreme radioresistance of Deinococcus radiodurans. J Bacteriol. 175(11) : 3581-3590.
42. He, Y.. 2009. High cell density production of Deinococcus radiodurans under optimized conditions. J Ind Microbiol Biotechnol. 36(4) : 539-546.
43. Heydari Laboratory. Dept. of Nutrition & Food Science Wayne State University College of Science. http://141.217.91.198/BER.htm. 2014/06/18.
44. Homologous Recombination from a Molecular Perspective. http://www.sci.sdsu.edu/~smaloy/MicrobialGenetics/topics/genetic-analysis/recombination/rec-molecular.html. 2014/06/19.
45. Ito, H., Watanabe, H., Takhisa M., and Iizuka H.. 1983. Isolation and identification of radiation-resistant cocci belonging to the genus Deinococcus from sewage sludges and animal feeds. Agric Biol Chem. 47(6) : 1239–1247.
46. Jones, C. W., and Redfearn, E. R.. 1966. Electron transport in Azotobacter vinelandii. Biochim Biophys. 113(3) : 467-481.
47. Jurtshuk P, Jr., Mueller, T. J., and Wong, T. Y.. 1981. Isolation and purification of the cytochrome oxidase of Azotobacter vinelandii. Biochim Biophys Acta. 637(2) : 374-382.
48. Kita, K., Konishi, K., and Anraku, Y.. 1984. Terminal oxidases of Escherichia coli aerobic respiratory chain. I. purification and properties of cytochrome b562-o complex from cells in the early exponential phase of aerobic growth. J Biol Chem. 259(5) : 3368-3374.
49. Kobatake, M., Tanabe, S., and Hasegawa, S.. 1973. New Micrococcus radioresistant red pigment, isolated from lama glama feces, and its use as microbiological indicator of radiosterilization. C R Seances Soc Biol Fil. 167(10) : 1506-1510.
50. Lange, C. C., Wackett, L. P., Minton, K. W., and Daly, M. J.. 1998. Engineering a recombinant Deinococcus radiodurans for organopollutant degradation in radioactive mixed waste environments. Nat Biotechnol. 16(10) : 929-933.
51. Lee, H. Y., Magotra, M., Wong, T. Y., Chakraborty, C., and Liu, J. K.. 2012. ATP-dependent fructose uptake system in Deinococcus radiodurans. Appl Microbiol Biotechnol. 93(3) : 1241–1248.
52. Leibowitz, P. J., Schwartzberg, L. S., and Bruce, A. K.. 1976. The in vivo association of manganes with the chromosome of Micrococcus radiodurans. Photochem Photobiol. 23(1) : 45-50.
53. Lemee, L., Peuchant, E., Clerc, M., Brunner, M., and Pfander, H.. 1997. Deinoxanthin: a new carotenoid isolated from Deinococcus radiodurans. Tetrahedron. 53 : 919-926.
54. Levin-Zaidman, S., Englander, J., Shimoni, E., Sharma, A. K., Minton, K. W., and Minsky, A.. 2003. Ringlike structure of the Deinococcus radiodurans genome: a key to radioresistance?. Science. 299(5604) : 254-256.
55. Lewis, N. F.. 1973. Radio-resistant Micrococcus radiophilus sp. nov. isolated from irradiated Bombay duck. Curr Sci. 42 : 45-50.
56. Lin, C. L., Lin, C. S., and Tan, S. T.. 1995. Mutations showing specificity for normal growth or Mn(Ⅱ)-dependent post-exponential-phase cell division in Deinococcus radiodurans. Microbiol. 141 : 1707-1714.
57. Liu, J. K., Hsu, C. H., Liu, C. F., Li, S. Y., and Tsai, Y. R.. 1992. Isolation and partial purification of cytochrome oxidases from Bacillus thuringiensis subsp. israelensis HD-567. Zhonghua Min Guo Wei Sheng Wu Ji Mian Yi Xue Za Zhi. 25(3) : 138-148.
58. Liu, J. K.. 1981. The cytochrome oxidase reaction in Bacillus species. The University of Houston博士論文.
59. Makarova, K. S., Aravind, L., Wolf, Y. I., Tatusov, R. L., Minton, K. W., Koonin, E. V., and Daly, M. J.. 2001. Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics. Microbiol Mol Biol Rev. 65(1) : 44-79.
60. Makarova, K. S., Omelchenko, M. V., Gaidamakova, E. K., Matrosova, V. Y., Vasilenko, A., Zhai, M., Lapidus, A., Copeland, A., Kim, E., Land, M., Mavrommatis, K., Pitluck, S., Richardson, P. M., Detter, C., Brettin, T., Saunders, E., Lai, B., Ravel, B., Kemner, K. M., Wolf, Y. I., Sorokin, A., Gerasimova, A. V., Gelfand, M. S., Fredrickson, J. K., Koonin, E. V., and Daly, M. J.. 2007. Deinococcus geothermalis: the pool of extreme radiation resistance genes shrinks. PLoS One. 2 (9) : e955.
61. Masters, C. I., Moseley, B. E., and Minton, K. W.. 1991. AP endonuclease and uracil DNA glycosylase activities in Deinococcus radiodurans. Mutat Res. 254(3) : 263-272.
62. Mattimore, V., and Battista, J. R.. 1996. Radioresistance of Deinococcus radiodurans: functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. J Bacteriol. 178(3) : 633-637.
63. McCord, J. M., and Fridovich, I.. 1970. The utility of superoxide dismutase in studying free radical reactions. Ⅱ. The mechanism of the mediation of cytochrome c reduction by a variety of electron carriers. J Biol Chem. 245(6) : 1374-1377.
64. Misra, H., and Fridovich, I.. 1976. Superoxide dismutase and the oxygen enhancement of radiation lethality. Arch Biochem Biophys. 176(2) : 577-581.
65. Moseley, B. E., and Mattingly, A.. 1971. Repair of irradiation transforming deoxyribonucleic acid in wild type and a radiation-sensitive mutant of Micrococcus radiodurans. J Bacteriol. 105(3) : 976-983.
66. Moseley, B. E., and Setlow, J. K.. 1968. Transformation in Micrococcus radiodurans and the ultraviolet sensitivity of its transforming DNA. Proc Natl Acad Sci U S A. 61(1) : 176-183.
67. Muller, D. J., Baumeister, W., and Engel, A.. 1996. Conformational change of the hexagonally packed intermediate layer of Deinococcus radiodurans monitored by atomic force microscopy. J Bacteriol. 178(11) : 3025-3030.
68. Murray, R. G. E.. 1992. The family Deinococcaceae. The prokaryotes. A handbook of the biology of bacteria: ecophysiology, isolation, identification, application, Vol. 4. (Balows A, Truper HG, Dworkin M, Harder W & Schleifer KH, eds). New York: Springer-Verlag. p.3732-3744.
69. Oka, T., Udagawa, K., and Kinoshita, S.. 1968. Unbalanced growth death due to depletion of Mn2+ in Brevibacterium ammoniagenes. J Bacteriol. 96(5) : 1760-1767.
70. Peters, J, and Baumeister, W.. 1986. Molecular cloning, expression, and characterization of the gene for the surface (HPI)-layer protein of Deinococcus radiodurans in Escherichia coli. J Bacteriol. 167(3) : 1048-1054.
71. Petkau, A., Chelack, W. S., and Pleskach, S. D.. 1976. Letter: protection of post-irradiated mice by superoxide dismutase. Int J Radiat Biol Relat Stud Phys Chem Med. 29(3) : 297-299.
72. Puustinen, A., Morgan, J. E., Verkhovsky, M., Thomas, J. W., Gennis, R. B., and Wikstrom, M.. 1992. The low-spin heme site of cytochrome o from Escherichia coli is promiscuous with respect to heme type. Biochemistry. 31(42) : 10363-10369.
73. Rainey, F. A., Nobre, M. F., Schumann, P., Stackebrandt, E., and da Costa, M. S.. 1997. Phylogenetic diversity of the deinococci as determined by 16S ribosomal DNA sequence comparison. Int J Syst Bacteriol. 47(2) : 510-514.
74. Rainey, F. A., Ray, K., Ferreira, M., Gatz, B. Z., Nobre, M. F., Bagaley, D., Rash, B. A., Park, M. J., Earl, A. M., Shank, N. C., Small, A. M., Henk, M. C., Battista, J. R., Kampfer, P., and da Costa, M. S.. 2005. Extensive diversity of ionizing-radiation-resistant bacteria recovered from sonoran desert soil and description of nine new species of the genus Deinococcus obtained from a single soil sample. Appl Environ Microbiol. 71(9) : 5225-5235.
75. Raj, H. D., Duryee, F. L., Deeney, A. M., Wang, C. H., Anderson, A. W., and Elliker, P. R.. 1960. Utilization of carbohydrates and amino acids by Micrococcus radiodurans. Can J Microbiol. 6 : 289-298.
76. Rew, D. A.. 2003. Deinococcus radiodurans. Eur J Surg Oncol. 29(6) : 557-558.
77. Romano, A. H., Eberhard, S. J., Dingle, S. L., and McDowell, T. D.. 1970. Distribution of the phosphoenolpyruvate: glucose phosphotransferase system in bacteria. J Bacteriol. 104 : 808-813.
78. Romano, A. H., Trifone, J. D., and Brustolon, M.. 1979. Distribution of the phosphoenolpyruvate: glucose phosphotransferase system in fermentative bacteria. J Bacteriol. 139(1) : 93-97.
79. Samuni, A., and Czapski, G.. 1978. Radiation-induced damage in Escherichia coli B: the effect of superoxide radicals and molecular oxygen. Radiat Res. 76(3) : 624-632.
80. Shapiro, A., DiLello, D., Loudis, M. C., Keller, D. E., and Hutner, S. H.. 1977. Minimal requirements in defined media for improved growth of some radio-resistant pink tetracocci. Appl Environ Microbiol. 33(5) : 1129-1133.
81. Spinkarev, V. P., Crofts, A. R., and Wraight, C. A.. 2006. Spectral analysis of the bc(1) complex components in situ: beyond the traditional difference approach. Biochim Biophys Acta. 1757(1) : 67-77.
82. Stevens, A., and Henry, J.. 1964. Studies on the ribonucleic acid polymerase from Escherichia coli. I. purification of the enzyme and studies of ribonucleic acid formation. J Biol Chem. 239 : 196-203.
83. Szwergold, B. S., Ugurbil, K., and Brown, T. R.. 1995. Properties of fructose-1,6-bisphosphate aldolase from Escherichia coli: an NMR analysis. Arch Biochem Biophys. 317(1) : 244-252.
84. Tan, S. T., and Maxcy, R. B.. 1986. Simple method to demonstrate radiation-inducible radiation resistance in microbial cells. Appl Environ Microbiol. 51(1) : 88-90.
85. Tan, S. T., Maxcy, R. B., and Thompson, T. L.. 1983. Paper replication method for isolation of radiation-sensitive mutants. Appl Environ Microbiol. 46(1) : 233-236.
86. Van den Eynde, H., Van de Peer, Y., Vandenabeele, H., Van Bogaert, M., and De Wachter, R.. 1990a. 5S rRNA sequences of myxobacteria and radioresistant bacteria and implications for eubacterial evolution. Int J Syst Bacteriol. 40(4) : 399-404.
87. Van den Eynde, H., Van de Peer, Y., Vandenabeele, H., Van Bogaert, M., and De Wachter, R.. 1990b. 5S rRNA sequences of Myxobacteria and radioresistant bacteria and implications for eubacterial evolution. Int J Syst Bacteriol. 40(4) : 399-404.
88. Van Gelder, B., and Slater, E. C.. 1962. The extinction coefficient of cytochrome c. Biochim Biophys Acta. 58 : 593-595.
89. Venkateswaran, A., McFarlan, S. C., Ghosal, D., Minton, K. W., Vasilenko, A., Makarova, K., Wackett, L. P., and Daly, M. J.. 2000. Physiologic determinants of radiation resistance in Deinococcus radiodurans. Appl Environ Microbiol. 66(6) : 2620–2626.
90. White, O., Eisen, J. A., Heidelberg, J. F., Hickey, E. K., Peterson, J. D., Dodson, R. J., Haft, D. H., Gwinn, M. L., Nelson, W. C., Richardson, D. L., Moffat, K. S., Qin, H., Jiang, L., Pamphile, W., Crosby, M., Shen, M., Vamathevan, J. J., Lam, P., McDonald, L., Utterback, T., Zalewski, C., Makarova, K. S., Aravind, L., Daly, M. J., Minton, K. W., Fleischmann, R. D., Ketchum, K. A., Nelson, K. E., Salzberg, S., Smith, H. O., Venter, J. C., and Fraser, C. M.. 1999. Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1. Science. 2869(5444) : 1571-1577.
91. Woese, C. R., Stackebrandt, E., Macke, T. J., and Fox, G. E.. 1985. A phylogenetic definition of the major eubacterial taxa. Syst Appl Microbiol. 6 : 143-151.
92. Work, E., and Griffiths, H.. 1968. Morphology and chemistry of cell walls of Micrococcus radiodurans. J Bacteriol. 95(2) : 641-657.
93. Yang, T. Y., and Jurtshuk P, Jr.. 1978. Studies on the red oxidase (cytochrome o) of Azotobacter vinelandii. Biochem Biophys Res Commun. 81(3) : 1032-1039.
94. Zhang, Y. M., Wong, T. Y., Chen, L. Y., Lin, C. S., and Liu, J. K.. 2000. Induction of a futile Embden-Meyerhof-Parnas pathway in Deinococcus radiodurans by Mn: possible role of the pentose phosphate pathway in cell survival. Appl Environ Microbiol. 66(1) : 105-112.
95. Zhang, Y.. 1997. Manganese dependent glycolysis of an extremely radioresistant bacterium, Deinococcus radiodurans. M. S. Thesis. The University of Memphis. U.S.A.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code