Responsive image
博碩士論文 etd-0812116-103838 詳細資訊
Title page for etd-0812116-103838
論文名稱
Title
使用計算流體力學模擬人工肺中氧氣交換裝置:分析血液流經矩狀排列纖維的氧氣交換情形
Oxygen Transport in Blood Flows in a Mini-Oxygenator: a Computational Fluid Dynamics Study on Artificial Lung
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
60
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-26
繳交日期
Date of Submission
2016-09-12
關鍵字
Keywords
纖維、血液、人工肺、氧氣傳輸、脈衝流
fiber, artificial lung, non-Newtonian flow, oxygen transport, pulsating flow
統計
Statistics
本論文已被瀏覽 5741 次,被下載 39
The thesis/dissertation has been browsed 5741 times, has been downloaded 39 times.
中文摘要
這個研究是使用數值化運算模擬缺氧血流經過一個矩陣排列纖維的區域,而氧氣從纖維傳輸到缺氧血中。在這個分析中由於心臟並不是一個穩態的輸出來源,因此波動流的影響是非常重要的。在這研究之中,我使用一些無因次參數,例如,Reynolds numbers (Re), Womersley parameters (α), pulsation amplitudes (A) 來固定我的流場,並用 power-law model 模擬血液這個非牛頓流體以及 Hill equation 來描述氧氣融在血液中的數值,最後從這個研究可以觀察出,波動流對於氧氣分壓 (PO2) 和 氧氣融在血液中的濃度 (SO2) 以及 Sherwood numbers 的影響非常大。 然而,當血液流入矩陣排列纖維的區域後,氧氣分壓 (PO2) 的相位差延遲現象逐漸出現,而單獨一個纖維周邊的氧氣分壓 (PO2) 和 氧氣融在血液中的濃度 (SO2) 邊界層也完整的顯示於結果的部份,可以透過這部份的成果更加了解氧氣的擴散情形,最後探討了當PO2 設定最少需高於 100 mmHg 時,所需的矩陣排列纖維的區域長度與雷諾數的關係,雷諾數越大所需的矩陣排列纖維的區域長度越長,也造成壓差上升。
Abstract
The target of this research is to computationally analyze deoxygenated blood flows passing through a multi-fiber bundle that releases oxygen to blood. The effect of pulsatile flow on the oxygen transport in blood is investigated. Dimensionless parameters for the physical model include Reynolds numbers (Re), Womersley parameters (α), pulsation amplitudes (A). The power law model is used to describe the non-Newtonian flow and the Hill equation is employed to simulate the oxygen saturation of hemoglobin. It is observed that flow pulsation significantly influences the velocity profile, partial pressure of oxygen (PO2), saturation of oxygen (SO2) and Sherwood numbers, in blood flows along a fiber bundle region. As blood flows into fiber bundle region, the downstream sinusoidal profiles of O2 partial show the phase lag with respect to that at the entrance. The variations of SO2 and PO2 boundary layers are documented. Finally, the mixing length where PO2 achieves 100 mmHg is determined against different Reynolds numbers.
目次 Table of Contents
論文審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
Table of Contents v
List of Figures vii
List of Tables ix
1 Introduction 1
2 Computational details 8
2.1 Governing equation 13
2.2 Analysis parameter 17
3. Numerical method 18
4. Numerical validation 19
5. Results and Discussion 21
5.1 The phase lag analysis 21
5.2 The SO2 contours analysi 24
5.3 Sherwood number 26
5.4 Boundary layers of partial pressure of O2 (PO2) and O2 saturation (SO2) 34
5.5 The mixing length of fiber bundle region and pressure drop 37
6 Conclusions 40
7. References 41
8. Appendix 45
參考文獻 References
[1] Davies, A., Jones, D., Bailey, M., Beca, J., Bellomo, R., Blackwell, N., Forrest, P., Gattas, D., Granger, E., and Herkes, R., 2009, "Extracorporeal membrane oxygenation for 2009 influenza A (H1N1) acute respiratory distress syndrome," JAMA: the journal of the American Medical Association, 302(17), pp. 1888-1895.
[2] Gattinoni, L., Carlesso, E., and Langer, T., 2011, "Clinical review: Extracorporeal membrane oxygenation," Critical Care, 15(6), p. 1.
[3] Olsson, K., Simon, A., Strueber, M., Hadem, J., Wiesner, O., Gottlieb, J., Fuehner, T., Fischer, S., Warnecke, G., and Kühn, C., 2010, "Extracorporeal membrane oxygenation in nonintubated patients as bridge to lung transplantation," American Journal of Transplantation, 10(9), pp. 2173-2178.
[4] Wallace, D. J., Milbrandt, E. B., and Boujoukos, A., 2010, "Ave, CESAR, morituri te salutant!(Hail, CESAR, those who are about to die salute you!)," Critical Care, 14(2), p. 1.
[5] Lick, S. D., and Zwischenberger, J. B., 2004, "Artificial lung: bench toward bedside," ASAIO journal, 50(1), pp. 2-5.
[6] Haft, J. W., Griffith, B. P., Hirschl, R. B., and Bartlett, R. H., 2002, "Results of an artificial-lung survey to lung transplant program directors," The Journal of heart and lung transplantation, 21(4), pp. 467-473.
[7] Bein, T., Weber, F., Philipp, A., Prasser, C., Pfeifer, M., Schmid, F., Butz, B., Birnbaum, D., Taeger, K., and Schlitt, H. J., 2006, "A new pumpless extracorporeal interventional lung assist in critical hypoxemia/hypercapnia," CRITICAL CARE MEDICINE-BALTIMORE-, 34(5), p. 1372.
[8] Vlasov, V., Karichev, Z., Muler, A., and Isaev, Y. V., 1985, "Oxygen transport in membrane oxygenizers," Biomedical Engineering, 19(4), pp. 120-125.
[9] Kamaruddin, H. D., and Koros, W. J., 1997, "Some observations about the application of Fick's first law for membrane separation of multicomponent mixtures," Journal of membrane science, 135(2), pp. 147-159.
[10] McCarthy, M. R., Vandegriff, K. D., and Winslow, R. M., 2001, "The role of facilitated diffusion in oxygen transport by cell-free hemoglobins: implications for the design of hemoglobin-based oxygen carriers," Biophysical chemistry, 92(1), pp. 103-117.
[11] Lund, L. W., Federspiel, W. J., and Hattler, B. G., 1996, "Gas permeability of hollow fiber membranes in a gas-liquid system," Journal of membrane science, 117(1), pp. 207-219.
[12] Zierenberg, J. R., Fujioka, H., Suresh, V., Bartlett, R. H., Hirschl, R. B., and Grotberg, J. B., 2006, "Pulsatile flow and mass transport past a circular cylinder," Physics of Fluids (1994-present), 18(1), p. 013102.
[13] Zierenberg, J. R., Fujioka, H., Hirschl, R. B., Bartlett, R. H., and Grotberg, J. B., 2007, "Pulsatile blood flow and oxygen transport past a circular cylinder," Journal of biomechanical engineering, 129(2), pp. 202-215.
[14] Qamar, A., Samtaney, R., and Bull, J. L., 2012, "Pulsatility role in cylinder flow dynamics at low Reynolds number," Physics of Fluids (1994-present), 24(8), p. 081701.
[15] Chan, K. Y., Fujioka, H., Bartlett, R. H., Hirschl, R. B., and Grotberg, J. B., 2006, "Pulsatile flow and mass transport over an array of cylinders: Gas transfer in a cardiac-driven artificial lung," Journal of biomechanical engineering, 128(1), pp. 85-96.
[16] Zhang, J., Nolan, T. D., Zhang, T., Griffith, B. P., and Wu, Z. J., 2007, "Characterization of membrane blood oxygenation devices using computational fluid dynamics," Journal of membrane science, 288(1), pp. 268-279.
[17] Zhang, J., Taskin, M. E., Koert, A., Zhang, T., Gellman, B., Dasse, K. A., Gilbert, R. J., Griffith, B. P., and Wu, Z. J., 2009, "Computational Design and In Vitro Characterization of an Integrated Maglev Pump‐Oxygenator," Artificial organs, 33(10), pp. 805-817.
[18] Mazaheri, A. R., and Ahmadi, G., 2006, "Uniformity of the fluid flow velocities within hollow fiber membranes of blood oxygenation devices," Artificial organs, 30(1), pp. 10-15.
[19] Severinghaus, J. W., 1979, "Simple, accurate equations for human blood O2 dissociation computations," Journal of Applied Physiology, 46(3), pp. 599-602.
[20] Breuer, H.-W., Groeben, H., Breuer, J., and Worth, H., 1989, "Oxygen saturation calculation procedures: a critical analysis of six equations for the determination of oxygen saturation," Intensive care medicine, 15(6), pp. 385-389.
[21] Merrill, E. W., 1969, "Rheology of blood," Physiol. Rev, 49(4), pp. 863-888.
[22] Yilmaz, F., and Gundogdu, M. Y., 2008, "A critical review on blood flow in large arteries; relevance to blood rheology, viscosity models, and physiologic conditions," Korea-Australia Rheology Journal, 20(4), pp. 197-211.
[23] Ponalagusamy, R., and Selvi, R. T., 2011, "A study on two-layered model (Casson–Newtonian) for blood flow through an arterial stenosis: Axially variable slip velocity at the wall," Journal of the Franklin Institute, 348(9), pp. 2308-2321.
[24] Dash, R., Mehta, K., and Jayaraman, G., 1996, "Casson fluid flow in a pipe filled with a homogeneous porous medium," International Journal of Engineering Science, 34(10), pp. 1145-1156.
[25] Karimi, S., Dabagh, M., Vasava, P., Dadvar, M., Dabir, B., and Jalali, P., 2014, "Effect of rheological models on the hemodynamics within human aorta: CFD study on CT image-based geometry," Journal of Non-Newtonian Fluid Mechanics, 207, pp. 42-52.
[26] Chaitanya, N., and Dhiman, A., 2012, "Non-Newtonian power-law flow and heat transfer across a pair of side-by-side circular cylinders," International Journal of Heat and Mass Transfer, 55(21), pp. 5941-5958.
[27] Gijsen, F. J., van de Vosse, F. N., and Janssen, J., 1999, "The influence of the non-Newtonian properties of blood on the flow in large arteries: steady flow in a carotid bifurcation model," Journal of biomechanics, 32(6), pp. 601-608.
[28] Johnston, B. M., Johnston, P. R., Corney, S., and Kilpatrick, D., 2004, "Non-Newtonian blood flow in human right coronary arteries: steady state simulations," Journal of biomechanics, 37(5), pp. 709-720.
[29] Liu, X., Fan, Y., Deng, X., and Zhan, F., 2011, "Effect of non-Newtonian and pulsatile blood flow on mass transport in the human aorta," Journal of biomechanics, 44(6), pp. 1123-1131.
[30] Zwischenberger, J. B., Anderson, C. M., Cook, K. E., Lick, S. D., Mockros, L. F., and Bartlett, R. H., 2001, "Development of an implantable artificial lung: challenges and progress," ASAIO journal, 47(4), pp. 316-320.
[31] Taskin, M. E., Fraser, K. H., Zhang, T., Griffith, B. P., and Wu, Z. J., 2010, "Micro-scale modeling of flow and oxygen transfer in hollow-fiber membrane bundle," Journal of membrane science, 362(1), pp. 172-183.
[32] Stefanovska, A., 1999, "Physics of the human cardiovascular system," Contemporary Physics, 40(1), pp. 31-55.
[33] Lee, H.-H., 2015, Finite element simulations with ANSYS workbench 16, SDC publications.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code