Responsive image
博碩士論文 etd-0812117-120359 詳細資訊
Title page for etd-0812117-120359
論文名稱
Title
結構特徵對氧化石墨烯-四氧化三鐵複合材料吸附水中藥品類污染物之效能影響
Effect of structural characteristics on adsorption of pharmaceuticals by graphene oxide-iron oxide nanocomposite material
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
106
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-18
繳交日期
Date of Submission
2017-09-13
關鍵字
Keywords
氧化石墨烯、四氧化三鐵、藥品、化學結構、等溫吸附線、吸附動力實驗
Adsorption kinetics, Graphene oxide, Iron oxide, Pharmaceutical, Molecular structure, Adsorption isotherm
統計
Statistics
本論文已被瀏覽 5656 次,被下載 27
The thesis/dissertation has been browsed 5656 times, has been downloaded 27 times.
中文摘要
藥品及個人保健用品(Pharmaceuticals and personal care products)已多次於環境中檢測出,由於一般淨、污水處理設備無法將其有效去除,且可能轉變為致癌氧化消毒副產物而受到關注。氧化石墨烯(Graphene oxide,GO)由於高比表面積及官能基團,具有發展為新型水處理材料之潛力,然而其奈米尺度的特徵不易將其自水中移除,因此本研究以化學共沉降法將GO合成為帶有磁性可自水中移除之氧化石墨烯-四氧化三鐵(GO/Fe3O4),同時為探討藥品結構是否影響其進入GO/Fe3O4微孔,本研究從國內用量前二十大之藥品中,挑選三種不同結構之藥品,分別為雙氯芬酸(Diclofenac)、二甲雙胍(Metformin)與普萘洛爾(Propranolol)。本研究使用之GO材料為將Hummers法製程進行修正改良所製備,得出之GO含有較原方式更豐富之官能基,後續以不同方式製備GO/Fe3O4複合吸附材料,依據不同含鐵比例分類三種GO/Fe3O4複合材料,同時根據是否烘乾進一步再將此材料分為粉末與懸浮液兩種型態,在去離子水背景下對三種藥品進行批次吸附實驗,觀察GO/Fe3O4對三種藥品之吸附效果。從材料特性分析結果顯示,以不同方式製備之GO,後續製備出之GO/Fe3O4之GO含量範圍為15~40 %,比表面積範圍為302~407 m2/g,小於2 nm之微孔體積比例範圍為7~25 %,除了小於2 nm之孔隙體積比例,其餘材料特性皆高於過去研究之結果,顯示GO製備方式與個人手法影響後續GO/Fe3O4複合材料之特性。在等溫批次吸附實驗方面,在水質pH為6的情況下,以GO/Fe3O4複合材料粉末吸附水中三種藥品,以含鐵比例最低之S2.5吸附為普萘洛爾最佳,雙氯芬酸次之,最差者為二甲雙胍;隨著含鐵比例提高,二甲雙胍幾乎已不被吸附,雙氯芬酸之吸附效果則於高含鐵比例S72時優於普萘洛爾。二甲雙胍不具苯環之偏三維結構不易進入GO/Fe3O4微孔,含鐵比例較低時因微孔比例較高,導致普萘洛爾其具有Naphthalene雙苯環之偏二維結構較易進入GO/Fe3O4微孔;S72 GO/Fe3O4微孔比例較低,雙氯芬酸因其苯環結構上氯原子降低電子密度,較易與以碳為主要組成之GO/Fe3O4複合材料親合。以GO/Fe3O4複合材料懸浮液為吸附劑,在較低含鐵比例之S2.5與S18吸附效果為普萘洛爾最佳,二甲雙胍次之,最差者為雙氯芬酸;以高含鐵比例S72吸附效果最佳者為雙氯芬酸,最差者為二甲雙胍。推測原因為,低含鐵比例時懸浮液表面帶負電,與水質中性時帶負電荷之雙氯芬酸靜電相斥不易吸附,其他兩種藥品則因靜電相吸而吸附效果較好,普萘洛爾較偏二維之結構使其吸附效果最佳;因S72懸浮液之表面電荷趨近中性降低靜電作用力相斥之影響,雙氯芬酸因其接有氯原子之苯環降低電子密度,使其易與吸附劑親合反而吸附效果最佳,普萘洛爾則仍由於其較偏二維結構使吸附效果較二甲雙胍優。吸附動力實驗結果顯示假性二階動力反應方程式有較高相關性,實驗於去離子水背景進行,影響吸附反應速率因素除藥品濃度外,另一因素為GO/Fe3O4濃度,但實驗皆使用定量之GO/Fe3O4,故推測GO/Fe3O4表面官能基為影響吸附反應速率之另一原因。結果顯示以粉末吸附藥品約360分鐘後達到平衡,懸浮液則約60分鐘內達到平衡。pH影響方面,因藥品酸解離常數(Acid dissolution constant,pKa)高低影響藥品帶電狀態,進而影響GO/Fe3O4複合材料吸附量。GO/Fe3O4複合材料粉末因製備高溫烘乾使表面在水中帶電比例較低,若藥品處於不帶電狀態,因分子團聚而被中性之GO/Fe3O4粉末吸附捕集,使該藥品在表面呈中性時吸附量較帶電狀態下之吸附量高。GO/Fe3O4複合材料懸浮液表面帶負電荷為主,且表面負電荷隨pH值上升而增加,使得在中性環境下普遍表面帶有正電荷之二甲雙胍與普萘洛爾的吸附量可藉由靜電力吸引而提高吸附效果;但在中性環境下表面帶有負電荷之雙氯芬酸,其吸附量則因靜電相斥力增強而降低;當藥品表面若處於中性狀態,因靜電作用力消失而使懸浮液對二甲雙胍與普萘洛爾之吸附量與帶電狀態時有所降低,雙氯芬酸則有所增高。GO/Fe3O4複合材料雖可吸附藥品污染物,但對各藥品吸附效果有所差異,需考慮吸附目標污染物化學結構以及GO/Fe3O4複合材料型態,水質pH與藥品pKa亦為影響GO/Fe3O4複合材料吸附藥品效能之影響因子。

關鍵字:氧化石墨烯、四氧化三鐵、藥品、化學結構、等溫吸附線、吸附動力實驗
Abstract
Pharmaceuticals and personal care products (PPCPs) have been detected in the environment repeatedly and are known to be difficultly removed in conventional wastewater treatment technologies. Graphene oxide (GO), due to its large surface area and modifiable functional groups, has the potential to be applied as a novel wastewater treatment technology. Considered the nano-size of GO material, the GO-iron oxide (GO/Fe3O4) composite with high adsorption capacity was synthesized by co-precipitation in this study, assisting in its quickly removal from the water phase with a magnetic force after treatment. The feasibility of this composite to remove pharmaceuticals in waters was investigated, with respect to the effects of the molecular structures of pharmaceuticals and preparation of the composite. The pharmaceuticals of interest included diclofenac, metformin, and propranolol. The Hummers method was employed to prepare the GO, following by synthesis to generate the GO/Fe3O4 suspension and particles with different iron contents. As to the physicochemical characteristics of the composites, the GO/Fe3O4 possessed a GO content from 15 % to 40 %, a surface area from 302 to 407 m2/g, fraction of the micro-pore with a diameter below 2 nm from 7 % to 25 %, showing a different result from those published. For the adsorption isotherms, at pH 6, the adsorption performance followed the order of propranolol > diclofenac > metformin by using the GO/Fe3O4 with low iron content (S2.5). Given its three-dimensional structure, metformin was less possible to be adsorped into the micro pores of the GO/Fe3O4. However, propranolol possesses naphthalene-like two-dimensional functional group, enhancing its adsorption by the micro-pores of the GO/Fe3O4. By increasing the iron content of the composites, the adsorption of diclofenac was better than that of propranolol. The chlorines on the benzene ring of diclofenac reducing the electronic density of diclofenac was one possible explanation for the enhanced adsorption. For the GO/Fe3O4 suspension as the adsorbent, the adsorption performance of propranolol was the best, whereas diclofenac was less adsorbed when the suspension possessed low iron contents. By increasing the iron content of the the adsorbent, the adsorption of diclofenac became the best, with the metformin adsorption was the worst. Both negative charges of diclofenac and GO/Fe3O4 suspension at low iron contents inhibited the diclofenac adsorption at a neutral pH, while the adsorption of the other two pharmaceuticals still occurred via electric attraction. When the iron content of the adsorbent increased (e.g.,S72), the surface charge of the suspension became neutral enhanced the diclofenac adsorption. The adsorptions of pharmaceuticals followed the pseudo-second-order equation, implying the effects of the pharmaceutical concentration and GO/Fe3O4 n the reaction rate. The adsorption onto particles reached equilibrium after 360 minutes when using the powder adsorbents, whereas the adsorption onto suspension reached equilibrium in 60 minutes. By changing the reaction pH, the surface charge of a pharmaceutical varied in accordance with its acid dissolution constant (pKa), varying the adsorption capacity. For both particle or suspension, the optimal adsorption occurred when the surface charges of the adsorbent and pharmaceutical were negative and positive, respectively. The findings of this study provided insights into the feasibility of using GO/Fe3O4 composites as a novel adsorbent to remove pharmaceuticals in waters, with respect to the effects of certain operation factors and preparation of the composite.

Key words : Graphene oxide; Iron oxide; Pharmaceutical; Molecular structure; Adsorption isotherm; Adsorption kinetics
目次 Table of Contents
摘要 i
Abstract iv
目錄 vi
圖目錄 ix
表目錄 xii
第一章 前言 1
1.1研究緣起 1
1.2研究目的 3
1.3研究貢獻與重要性 4
1.4研究架構 4
第二章 文獻回顧 6
2.1藥品及個人保健用品 6
2.1.1藥品及個人保健用品之來源與流佈 7
2.1.2藥品及個人保健用品之危害 8
2.1.3藥品及個人保健用品之去除 9
2.1.3.1薄膜去除PPCPs 9
2.1.3.2生物處理去除PPCPs 10
2.1.3.4高級氧化處理PPCPs 10
2.1.3.5吸附去除PPCPs 11
2.2石墨烯類材料 12
2.2.1氧化石墨烯 14
2.2.1.1氧化石墨烯製備 15
2.2.1.2還原態氧化石墨烯 16
2.2.1.3氧化石墨烯複合材料 17
2.2.2石墨烯類材料之其他吸附應用 18
2.2.2.1重金屬吸附 18
2.2.2.2染料吸附 19
2.2.2.3多環芳香烴吸附 21
2.2.2.4環境荷爾蒙吸附 21
2.2.2.5石墨烯類材料之吸附機制 22
2.2.3石墨烯類材料於環境中之行為 23
2.2.3.1氧化石墨烯之分散與聚合特性 23
2.2.3.2石墨烯類材料於環境中之降解現象 24
2.2.3.3石墨烯類材料於環境中之還原現象 25
第三章 實驗設備與方法 26
3.1實驗材料與設備 26
3.1.1材料與設備 26
3.2實驗方法 30
3.2.1 GO/Fe3O4合成方法 30
3.2.2去離子水背景之批次吸附實驗 30
3.3實驗數據分析 32
3.3.1等溫吸附曲線模式 32
3.3.2吸附動力方程式 33
3.4藥品濃度分析 33
3.5材料特性分析 34
3.5.1晶體結構 34
3.5.2 GO含量 35
3.5.3比表面積與孔隙體積 35
3.5.4表面結構 35
3.5.5懸浮液之界達電位 36
第四章 結果與討論 37
4.1材料特性分析 37
4.1.1晶體結構 37
4.1.2 GO含量 38
4.1.3比表面積與孔隙體積 40
4.1.4表面結構 43
4.1.5 GO/Fe3O4懸浮液之界達電位 45
4.2等溫吸附實驗 46
4.2.1 以不同製作方式之GO所合成之GO/Fe3O4吸附氯苯那敏之等溫吸附實驗 46
4.2.2 以GO/Fe3O4粉末吸附藥品之等溫吸附實驗 48
4.2.3以GO/Fe3O4懸浮液吸附藥品之等溫吸附實驗 51
4.3吸附動力實驗 54
4.3.1以GO/Fe3O4粉末吸附藥品之吸附動力實驗 54
4.3.2以GO/Fe3O4懸浮液吸附藥品之吸附動力實驗 59
4.4 pH影響吸附實驗 63
4.4.1 pH影響GO/Fe3O4粉末吸附藥品實驗結果 65
4.4.2 pH影響GO/Fe3O4懸浮液吸附藥品實驗結果 67
第五章 結論與建議 70
5.1結論 70
5.2建議 72
參考文獻 73
參考文獻 References
Akhavan, O., Abdolahad, M., Esfandiar, A., Mohatashamifar, M., 2010. Photodegradation of Graphene Oxide Sheets by TiO2 Nanoparticles after a Photocatalytic Reduction. Journal of Physical Chemistry C 114, 12955-12959.
Akhavan, O., Ghaderi, E., 2012. Escherichia coli bacteria reduce graphene oxide to bactericidal graphene in a self-limiting manner. Carbon 50, 1853-1860.
Alzari, V., Nuvoli, D., Scognamillo, S., Piccinini, M., Gioffredi, E., Malucelli, G., Marceddu, S., Sechi, M., Sanna, V., Mariani, A., 2011. Graphene-containing thermoresponsive nanocomposite hydrogels of poly(N-isopropylacrylamide) prepared by frontal polymerization. Journal of Materials Chemistry 21, 8727-8733.
Andreozzi, R., Caprio, V., Insola, A., Marotta, R., 1999. Advanced oxidation processes (AOP) for water purification and recovery. Catalysis Today 53, 51-59.
Apul, O.G., Wang, Q.L., Zhou, Y., Karanfil, T., 2013. Adsorption of aromatic organic contaminants by graphene nanosheets: Comparison with carbon nanotubes and activated carbon. Water Research 47, 1648-1654.
Aranami, K., Readman, J.W., 2007. Photolytic degradation of triclosan in freshwater and seawater. Chemosphere 66, 1052-1056.
Avdeef, A., 2007. Solubility of sparingly-soluble ionizable drugs. Advanced Drug Delivery Reviews 59, 568-590.
Baccar, R., Sarra, M., Bouzid, J., Feki, M., Blanquez, P., 2012. Removal of pharmaceutical compounds by activated carbon prepared from agricultural by-product. Chemical Engineering Journal 211, 310-317.
Barrows, S.E., Cramer, C.J., Truhlar, D.G., Elovitz, M.S., Weber, E.J., 1996. Factors controlling regioselectivity in the reduction of polynitroaromatics in aqueous solution. Environmental Science & Technology 30, 3028-3038.
Beltran, F.J., Pocostales, P., Alvarez, P., Oropesa, A.L., 2009. Diclofenac removal from water with ozone and activated carbon. Journal of Hazardous Materials 163, 768-776.
Berger, C., Song, Z.M., Li, T.B., Li, X.B., Ogbazghi, A.Y., Feng, R., Dai, Z.T., Marchenkov, A.N., Conrad, E.H., First, P.N., de Heer, W.A., 2004. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. Journal of Physical Chemistry B 108, 19912-19916.
Bisceglia, K.J., Yu, J.T., Coelhan, M., Bouwer, E.J., Roberts, A.L., 2010. Trace determination of pharmaceuticals and other wastewater-derived micropollutants by solid phase extraction and gas chromatography/mass spectrometry. Journal of Chromatography A 1217, 558-564.
Boreen, A.L., Arnold, W.A., McNeill, K., 2003. Photodegradation of pharmaceuticals in the aquatic environment: A review. Aquatic Sciences 65, 320-341.
Bosca, F., Marin, M.L., Miranda, M.A., 2001. Photoreactivity of the nonsteroidal anti-inflammatory 2-arylpropionic acids with photosensitizing side effects. Photochemistry and Photobiology 74, 637-655.
Boxall, A.B.A., Rudd, M.A., Brooks, B.W., Caldwell, D.J., Choi, K., Hickmann, S., Innes, E., Ostapyk, K., Staveley, J.P., Verslycke, T., Ankley, G.T., Beazley, K.F., Belanger, S.E., Berninger, J.P., Carriquiriborde, P., Coors, A., DeLeo, P.C., Dyer, S.D., Ericson, J.F., Gagne, F., Giesy, J.P., Gouin, T., Hallstrom, L., Karlsson, M.V., Larsson, D.G.J., Lazorchak, J.M., Mastrocco, F., McLaughlin, A., McMaster, M.E., Meyerhoff, R.D., Moore, R., Parrott, J.L., Snape, J.R., Murray-Smith, R., Servos, M.R., Sibley, P.K., Straub, J.O., Szabo, N.D., Topp, E., Tetreault, G.R., Trudeau, V.L., Van Der Kraak, G., 2012. Pharmaceuticals and Personal Care Products in the Environment: What Are the Big Questions? Environmental Health Perspectives 120, 1221-1229.
Brodie, B.C., 1859. On the atomic weight of graphite. Philosophical Transactions of the Royal Society of London 149, 249-259.
Buser, H.R., Poiger, T., Muller, M.D., 1998. Occurrence and fate of the pharmaceutical drug diclofenac in surface waters: Rapid photodegradation in a lake. Environmental Science & Technology 32, 3449-3456.
Chen, J., Shepherd, R.L., Razal, J.M., Huang, X., Zhang, W.M., Zhao, J., Harris, A.T., Wang, S., Minett, A.I., Zhang, H., 2013. Scalable Solid-Template Reduction for Designed Reduced Graphene Oxide Architectures. Acs Applied Materials & Interfaces 5, 7676-7681.
Chen, L., Li, Y.H., Hu, S., Sun, J.K., Du, Q.J., Yang, X.X., Ji, Q., Wang, Z.H., Wang, D.C., Xia, Y.Z., 2016. Removal of methylene blue from water by cellulose/graphene oxide fibres. Journal of Experimental Nanoscience 11, 1156-1170.
Chen, S., Zhu, J.W., Wu, X.D., Han, Q.F., Wang, X., 2010a. Graphene Oxide-MnO2 Nanocomposites for Supercapacitors. Acs Nano 4, 2822-2830.
Chen, W.F., Yan, L.F., Bangal, P.R., 2010b. Chemical Reduction of Graphene Oxide to Graphene by Sulfur-Containing Compounds. Journal of Physical Chemistry C 114, 19885-19890.
Cheng, Z.L., Li, Y.X., Liu, Z., 2017. Novel adsorption materials based on graphene oxide/Beta zeolite composite materials and their adsorption performance for rhodamine B. Journal of Alloys and Compounds 708, 255-263.
Choucair, M., Thordarson, P., Stride, J.A., 2009. Gram-scale production of graphene based on solvothermal synthesis and sonication. Nature Nanotechnology 4, 30-33.
Chowdhury, I., Duch, M.C., Mansukhani, N.D., Hersam, M.C., Bouchard, D., 2013. Colloidal Properties and Stability of Graphene Oxide Nanomaterials in the Aquatic Environment. Environmental Science & Technology 47, 6288-6296.
Chung, K., Lee, C.H., Yi, G.C., 2010. Transferable GaN Layers Grown on ZnO-Coated Graphene Layers for Optoelectronic Devices. Science 330, 655-657.
Cote, L.J., Kim, J., Tung, V.C., Luo, J.Y., Kim, F., Huang, J.X., 2011. Graphene oxide as surfactant sheets. Pure and Applied Chemistry 83, 95-110.
Deng, X.J., Lu, L.L., Li, H.W., Luo, F., 2010. The adsorption properties of Pb(II) and Cd(II) on functionalized graphene prepared by electrolysis method. Journal of Hazardous Materials 183, 923-930.
Doll, T.E., Frimmel, F.H., 2004. Kinetic study of photocatalytic degradation of carbamazepine, clofibric acid, iomeprol and iopromide assisted by different TiO2 materials - determination of intermediates and reaction pathways. Water Research 38, 955-964.
Dreyer, D.R., Park, S., Bielawski, C.W., Ruoff, R.S., 2010. The chemistry of graphene oxide. Chemical Society Reviews 39, 228-240.
Dutta, M., Dutta, N.N., Bhattacharya, K.G., 1999. Aqueous phase adsorption of certain beta-lactam antibiotics onto polymeric resins and activated carbon. Separation and Purification Technology 16, 213-224.
Esplugas, S., Bila, D.M., Krause, L.G.T., Dezotti, M., 2007. Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in water effluents. Journal of Hazardous Materials 149, 631-642.
Fan, L.L., Luo, C.N., Sun, M., Li, X.J., Qiu, H.M., 2013a. Highly selective adsorption of lead ions by water-dispersible magnetic chitosan/graphene oxide composites. Colloids and Surfaces B-Biointerfaces 103, 523-529.
Fan, L.L., Luo, C.N., Sun, M., Qiu, H.M., Li, X.J., 2013b. Synthesis of magnetic beta-cyclodextrin-chitosan/graphene oxide as nanoadsorbent and its application in dye adsorption and removal. Colloids and Surfaces B-Biointerfaces 103, 601-607.
Fan, Z.J., Yan, J., Wei, T., Zhi, L.J., Ning, G.Q., Li, T.Y., Wei, F., 2011. Asymmetric Supercapacitors Based on Graphene/MnO2 and Activated Carbon Nanofiber Electrodes with High Power and Energy Density. Advanced Functional Materials 21, 2366-2375.
Fernandez-Merino, M.J., Guardia, L., Paredes, J.I., Villar-Rodil, S., Solis-Fernandez, P., Martinez-Alonso, A., Tascon, J.M.D., 2010. Vitamin C Is an Ideal Substitute for Hydrazine in the Reduction of Graphene Oxide Suspensions. Journal of Physical Chemistry C 114, 6426-6432.
Fu, F.L., Wang, Q., 2011. Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management 92, 407-418.
Fuerhacker, M., Durauer, A., Jungbauer, A., 2001. Adsorption isotherms of 17 beta-estradiol on granular activated carbon (GAC). Chemosphere 44, 1573-1579.
Gao, J., Liu, F., Liu, Y.L., Ma, N., Wang, Z.Q., Zhang, X., 2010. Environment-Friendly Method To Produce Graphene That Employs Vitamin C and Amino Acid. Chemistry of Materials 22, 2213-2218.
Gao, W., Majumder, M., Alemany, L.B., Narayanan, T.N., Ibarra, M.A., Pradhan, B.K., Ajayan, P.M., 2011. Engineered Graphite Oxide Materials for Application in Water Purification. Acs Applied Materials & Interfaces 3, 1821-1826.
Gao, Y., Li, Y., Zhang, L., Huang, H., Hu, J.J., Shah, S.M., Su, X.G., 2012. Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide. Journal of Colloid and Interface Science 368, 540-546.
Geim, A.K., Novoselov, K.S., 2007. The rise of graphene. Nature Materials 6, 183-191.
Girish, C.M., Sasidharan, A., Gowd, G.S., Nair, S., Koyakutty, M., 2013. Confocal Raman Imaging Study Showing Macrophage Mediated Biodegradation of Graphene In Vivo. Advanced Healthcare Materials 2, 1489-1500.
Gomez-Pacheco, C.V., Sanchez-Polo, M., Rivera-Utrilla, J., Lopez-Penalver, J., 2011. Tetracycline removal from waters by integrated technologies based on ozonation and biodegradation. Chemical Engineering Journal 178, 115-121.
Gonzalez-Gil, L., Papa, M., Feretti, D., Ceretti, E., Mazzoleni, G., Steimberg, N., Pedrazzani, R., Bertanza, G., Lema, J.M., Carballa, M., 2016. Is anaerobic digestion effective for the removal of organic micropollutants and biological activities from sewage sludge? Water Research 102, 211-220.
Guardia, L., Villar-Rodil, S., Paredes, J.I., Rozada, R., Martinez-Alonso, A., Tascon, J.M.D., 2012. UV light exposure of aqueous graphene oxide suspensions to promote their direct reduction, formation of graphene-metal nanoparticle hybrids and dye degradation. Carbon 50, 1014-1024.
Guo, S., Zhang, G.K., Guo, Y.D., Yu, J.C., 2013. Graphene oxide-Fe2O3 hybrid material as highly efficient heterogeneous catalyst for degradation of organic contaminants. Carbon 60, 437-444.
Gurzeda, B., Florczak, P., Kempinski, M., Peplinska, B., Krawczyk, P., Jurga, S., 2016. Synthesis of graphite oxide by electrochemical oxidation in aqueous perchloric acid. Carbon 100, 540-545.
Hao, L.Y., Song, H.J., Zhang, L.C., Wan, X.Y., Tang, Y.R., Lv, Y., 2012. SiO2/graphene composite for highly selective adsorption of Pb(II) ion. Journal of Colloid and Interface Science 369, 381-387.
Harijan, D.K., Chandra, V., 2016. Polyaniline functionalized graphene sheets for treatment of toxic hexavalent chromium. Journal of Environmental Chemical Engineering 4, 3006-3012.
He, T., Chen, D.R., Jiao, X.L., 2004. Controlled synthesis of Co3O4 nanoparticles through oriented aggregation. Chemistry of Materials 16, 737-743.
Heberer, T., 2002. Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicology Letters 131, 5-17.
Heidarizad, M., Sengor, S.S., 2016. Synthesis of graphene oxide/magnesium oxide nanocomposites with high-rate adsorption of methylene blue. Journal of Molecular Liquids 224, 607-617.
Hernandez, Y., Nicolosi, V., Lotya, M., Blighe, F.M., Sun, Z.Y., De, S., McGovern, I.T., Holland, B., Byrne, M., Gun'ko, Y.K., Boland, J.J., Niraj, P., Duesberg, G., Krishnamurthy, S., Goodhue, R., Hutchison, J., Scardaci, V., Ferrari, A.C., Coleman, J.N., 2008. High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotechnology 3, 563-568.
Hong, B.J., Compton, O.C., An, Z., Eryazici, I., Nguyen, S.T., 2012. Successful Stabilization of Graphene Oxide in Electrolyte Solutions: Enhancement of Biofunctionalization and Cellular Uptake. Acs Nano 6, 63-73.
Hu, L.H., Yang, Z.P., Cui, L.M., Li, Y., Ngo, H.H., Wang, Y.G., Wei, Q., Ma, H.M., Yan, L.G., Du, B., 2016. Fabrication of hyperbranched polyamine functionalized graphene for high-efficiency removal of Pb(II) and methylene blue. Chemical Engineering Journal 287, 545-556.
Hu, X.J., Liu, Y.G., Wang, H., Chen, A.W., Zeng, G.M., Liu, S.M., Guo, Y.M., Hu, X., Li, T.T., Wang, Y.Q., Zhou, L., Liu, S.H., 2013. Removal of Cu(II) ions from aqueous solution using sulfonated magnetic graphene oxide composite. Separation and Purification Technology 108, 189-195.
Hu, X.J., Liu, Y.G., Zeng, G.M., Wang, H., You, S.H., Hu, X., Tan, X.F., Chen, A.W., Guo, F.Y., 2015. Effects of inorganic electrolyte anions on enrichment of Cu(II) ions with aminated Fe3O4/graphene oxide: Cu(II) speciation prediction and surface charge measurement. Chemosphere 127, 35-41.
Hummers, W.S., Offeman, R.E., 1958. PREPARATION OF GRAPHITIC OXIDE. Journal of the American Chemical Society 80, 1339-1339.
Huschek, G., Hansen, P.D., Maurer, H.H., Krengel, D., Kayser, A., 2004. Environmental risk assessment of medicinal products for human use according to European commission recommendations. Environmental Toxicology 19, 226-240.
Jelic, A., Rodriguez-Mozaz, S., Barcelo, D., Gutierrez, O., 2015. Impact of in-sewer transformation on 43 pharmaceuticals in a pressurized sewer under anaerobic conditions. Water Research 68, 98-108.
Jiang, L.H., Liu, Y.G., Zeng, G.M., Xiao, F.Y., Hu, X.J., Hu, X., Wang, H., Li, T.T., Zhou, L., Tan, X.F., 2016. Removal of 17 beta-estradiol by few-layered graphene oxide nanosheets from aqueous solutions: External influence and adsorption mechanism. Chemical Engineering Journal 284, 93-102.
Jiao, L.Y., Zhang, L., Wang, X.R., Diankov, G., Dai, H.J., 2009. Narrow graphene nanoribbons from carbon nanotubes. Nature 458, 877-880.
Jin, Z.X., Wang, X.X., Sun, Y.B., Ai, Y.J., Wang, X.K., 2015. Adsorption of 4-n-Nonylphenol and Bisphenol-A on Magnetic Reduced Graphene Oxides: A.Combined Experimental and Theoretical Studies. Environmental Science & Technology 49, 9168-9175.
Jones, O.A.H., Voulvoulis, N., Lester, J.N., 2002. Aquatic environmental assessment of the top 25 English prescription pharmaceuticals. Water Research 36, 5013-5022.
Kasprzyk-Hordern, B., Dinsdale, R.M., Guwy, A.J., 2009. The removal of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs during wastewater treatment and its impact on the quality of receiving waters. Water Research 43, 363-380.
Kassaee, M.Z., Motamedi, E., Majdi, M., 2011. Magnetic Fe3O4-graphene oxide/polystyrene: Fabrication and characterization of a promising nanocomposite. Chemical Engineering Journal 172, 540-549.
Kim, S.R., Parvez, M.K., Chhowalla, M., 2009. UV-reduction of graphene oxide and its application as an interfacial layer to reduce the back-transport reactions in dye-sensitized solar cells. Chemical Physics Letters 483, 124-127.
Kimiagar, S., Rashidi, N., Witkowski, B.S., 2016. Basic Blue 41 removal by microwave hydrothermal reactor reduced graphene oxide. Desalination and Water Treatment 57, 27269-27278.
Konkena, B., Vasudevan, S., 2012. Understanding Aqueous Dispersibility of Graphene Oxide and Reduced Graphene Oxide through pK(a) Measurements. Journal of Physical Chemistry Letters 3, 867-872.
Kosma, C.I., Lambropoulou, D.A., Albanis, T.A., 2014. Investigation of PPCPs in wastewater treatment plants in Greece: Occurrence, removal and environmental risk assessment. Science of the Total Environment 466, 421-438.
Kotchey, G.P., Allen, B.L., Vedala, H., Yanamala, N., Kapralov, A.A., Tyurina, Y.Y., Klein-Seetharaman, J., Kagan, V.E., Star, A., 2011. The Enzymatic Oxidation of Graphene Oxide. Acs Nano 5, 2098-2108.
Lanphere, J.D., Luth, C.J., Walker, S.L., 2013. Effects of Solution Chemistry on the Transport of Graphene Oxide in Saturated Porous Media. Environmental Science & Technology 47, 4255-4261.
Lee, J., Chae, H.R., Won, Y.J., Lee, K., Lee, C.H., Lee, H.H., Kim, I.C., Lee, J.M., 2013. Graphene oxide nanoplatelets composite membrane with hydrophilic and antifouling properties for wastewater treatment. Journal of Membrane Science 448, 223-230.
Li, D., Muller, M.B., Gilje, S., Kaner, R.B., Wallace, G.G., 2008. Processable aqueous dispersions of graphene nanosheets. Nature Nanotechnology 3, 101-105.
Li, J., Zhang, S.W., Chen, C.L., Zhao, G.X., Yang, X., Li, J.X., Wang, X.K., 2012a. Removal of Cu(II) and Fulvic Acid by Graphene Oxide Nanosheets Decorated with Fe3O4 Nanoparticles. Acs Applied Materials & Interfaces 4, 4991-5000.
Li, J., Zhang, S.W., Chen, C.L., Zhao, G.X., Yang, X., Li, J.X., Wang, X.K., 2012b. Removal of Cu(II) and Fulvic Acid by Graphene Oxide Nanosheets Decorated with Fe3O4 Nanoparticles. Acs Applied Materials & Interfaces 4, 4991-5000.
Li, W.C., 2014. Occurrence, sources, and fate of pharmaceuticals in aquatic environment and soil. Environmental Pollution 187, 193-201.
Li, X.S., Cai, W.W., An, J.H., Kim, S., Nah, J., Yang, D.X., Piner, R., Velamakanni, A., Jung, I., Tutuc, E., Banerjee, S.K., Colombo, L., Ruoff, R.S., 2009. Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science 324, 1312-1314.
Li, Y.H., Du, Q.J., Liu, T.H., Peng, X.J., Wang, J.J., Sun, J.K., Wang, Y.H., Wu, S.L., Wang, Z.H., Xia, Y.Z., Xia, L.H., 2013. Comparative study of methylene blue dye adsorption onto activated carbon, graphene oxide, and carbon nanotubes. Chemical Engineering Research & Design 91, 361-368.
Li, Z.J., Chen, F., Yuan, L.Y., Liu, Y.L., Zhao, Y.L., Chai, Z.F., Shi, W.Q., 2012c. Uranium(VI) adsorption on graphene oxide nanosheets from aqueous solutions. Chemical Engineering Journal 210, 539-546.
Liao, N.N., Liu, Z.S., Zhang, W.J., Gong, S.G., Ren, D.M., Ke, L.J., Lin, K., Yang, H., He, F., Jiang, H.L., 2016. Preparation of a novel Fe3O4/graphene oxide hybrid for adsorptive removal of methylene blue from water. Journal of Macromolecular Science Part a-Pure and Applied Chemistry 53, 276-281.
Lin, A.Y.C., Reinhard, M., 2005. Photodegradation of common environmental pharmaceuticals and estrogens in river water. Environmental Toxicology and Chemistry 24, 1303-1309.
Lin, A.Y.C., Tsai, Y.T., Yu, T.H., Wang, X.H., Lin, C.F., 2011. Occurrence and fate of pharmaceuticals and personal care products in Taiwan's aquatic environment. Desalination and Water Treatment 32, 57-64.
Lin, A.Y.C., Wang, X.H., Lin, C.F., 2010. Impact of wastewaters and hospital effluents on the occurrence of controlled substances in surface waters. Chemosphere 81, 562-570.
Lin, Y.X., Xu, S., Jia, L., 2013. Fast and highly efficient tetracyclines removal from environmental waters by graphene oxide functionalized magnetic particles. Chemical Engineering Journal 225, 679-685.
Lishman, L., Smyth, S.A., Sarafin, K., Kleywegt, S., Toito, J., Peart, T., Lee, B., Servos, M., Beland, M., Seto, P., 2006. Occurrence and reductions of pharmaceuticals and personal care products and estrogens by municipal wastewater treatment plants in Ontario, Canada. Science of the Total Environment 367, 544-558.
Liu, J.L., Wong, M.H., 2013. Pharmaceuticals and personal care products (PPCPs): A review on environmental contamination in China. Environment International 59, 208-224.
Liu, K.P., Li, H.M., Wang, Y.M., Gou, X.J., Duan, Y.X., 2015. Adsorption and removal of rhodamine B from aqueous solution by tannic acid functionalized graphene. Colloids and Surfaces a-Physicochemical and Engineering Aspects 477, 35-41.
Liu, L., Li, C., Bao, C.L., Jia, Q., Xiao, P.F., Liu, X.T., Zhang, Q.P., 2012a. Preparation and characterization of chitosan/graphene oxide composites for the adsorption of Au(III) and Pd(II). Talanta 93, 350-357.
Liu, T.H., Li, Y.H., Du, Q.J., Sun, J.K., Jiao, Y.Q., Yang, G.M., Wang, Z.H., Xia, Y.Z., Zhang, W., Wang, K.L., Zhu, H.W., Wu, D.H., 2012b. Adsorption of methylene blue from aqueous solution by graphene. Colloids and Surfaces B-Biointerfaces 90, 197-203.
Luo, J.Y., Cote, L.J., Tung, V.C., Tan, A.T.L., Goins, P.E., Wu, J.S., Huang, J.X., 2010. Graphene Oxide Nanocolloids. Journal of the American Chemical Society 132, 17667-17669.
Luo, Y.B., Shi, Z.G., Gao, Q.A., Feng, Y.Q., 2011. Magnetic retrieval of graphene: Extraction of sulfonamide antibiotics from environmental water samples. Journal of Chromatography A 1218, 1353-1358.
Madadrang, C.J., Kim, H.Y., Gao, G.H., Wang, N., Zhu, J., Feng, H., Gorring, M., Kasner, M.L., Hou, S.F., 2012. Adsorption Behavior of EDTA-Graphene Oxide for Pb (II) Removal. Acs Applied Materials & Interfaces 4, 1186-1193.
Mi, X., Huang, G.B., Xie, W.S., Wang, W., Liu, Y., Gao, J.P., 2012. Preparation of graphene oxide aerogel and its adsorption for Cu2+ ions. Carbon 50, 4856-4864.
Narbaitz, R.M., Rana, D., Dang, H.T., Morrissette, J., Matsuura, T., Jasim, S.Y., Tabe, S., Yang, P., 2013. Pharmaceutical and personal care products removal from drinking water by modified cellulose acetate membrane: Field testing. Chemical Engineering Journal 225, 848-856.
Naseri, A., Barati, R., Rasoulzadeh, F., Bahram, M., 2015. Studies on Adsorption of Some Organic Dyes from Aqueous Solution onto Graphene Nanosheets. Iranian Journal of Chemistry & Chemical Engineering-International English Edition 34, 51-60.
Novoselov, K.S., Fal'ko, V.I., Colombo, L., Gellert, P.R., Schwab, M.G., Kim, K., 2012. A roadmap for graphene. Nature 490, 192-200.
Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A., 2004. Electric field effect in atomically thin carbon films. Science 306, 666-669.
Nuvoli, D., Valentini, L., Alzari, V., Scognamillo, S., Bon, S.B., Piccinini, M., Illescas, J., Mariani, A., 2011. High concentration few-layer graphene sheets obtained by liquid phase exfoliation of graphite in ionic liquid. Journal of Materials Chemistry 21, 3428-3431.
Park, S., Lee, K.S., Bozoklu, G., Cai, W., Nguyen, S.T., Ruoff, R.S., 2008. Graphene oxide papers modified by divalent ions - Enhancing mechanical properties via chemical cross-linking. Acs Nano 2, 572-578.
Pei, Z.G., Li, L.Y., Sun, L.X., Zhang, S.Z., Shan, X.Q., Yang, S., Wen, B., 2013. Adsorption characteristics of 1,2,4-trichlorobenzene, 2,4,6-trichlorophenol, 2-naphthol and naphthalene on graphene and graphene oxide. Carbon 51, 156-163.
Petrovic, M., Gonzalez, S., Barcelo, D., 2003. Analysis and removal of emerging contaminants in wastewater and drinking water. Trac-Trends in Analytical Chemistry 22, 685-696.
Ramesha, G.K., Kumara, A.V., Muralidhara, H.B., Sampath, S., 2011. Graphene and graphene oxide as effective adsorbents toward anionic and cationic dyes. Journal of Colloid and Interface Science 361, 270-277.
Rivera-Utrilla, J., Sanchez-Polo, M., Ferro-Garcia, M.A., Prados-Joya, G., Ocampo-Perez, R., 2013. Pharmaceuticals as emerging contaminants and their removal from water. A review. Chemosphere 93, 1268-1287.
Rosenfeldt, E.J., Linden, K.G., 2004. Degradation of endocrine disrupting chemicals bisphenol A, ethinyl estradiol, and estradiol during UV photolysis and advanced oxidation processes. Environmental Science & Technology 38, 5476-5483.
Salas, E.C., Sun, Z.Z., Luttge, A., Tour, J.M., 2010. Reduction of Graphene Oxide via Bacterial Respiration. Acs Nano 4, 4852-4856.
Sanchez-Polo, M., Rivera-Utrilla, J., Prados-Joya, G., Ferro-Garcia, M.A., Bautista-Toledo, I., 2008. Removal of pharmaceutical compounds, nitroimidazoles, from waters by using the ozone/carbon system. Water Research 42, 4163-4171.
Scheurer, M., Sacher, F., Brauch, H.J., 2009. Occurrence of the antidiabetic drug metformin in sewage and surface waters in Germany. Journal of Environmental Monitoring 11, 1608-1613.
Shen, R., Andrews, S.A., 2011. Demonstration of 20 pharmaceuticals and personal care products (PPCPs) as nitrosamine precursors during chloramine disinfection. Water Research 45, 944-952.
Shi, P.H., Su, R.J., Wan, F.Z., Zhu, M.C., Li, D.X., Xu, S.H., 2012. Co3O4 nanocrystals on graphene oxide as a synergistic catalyst for degradation of Orange II in water by advanced oxidation technology based on sulfate radicals. Applied Catalysis B-Environmental 123, 265-272.
Snyder, S.A., Adham, S., Redding, A.M., Cannon, F.S., DeCarolis, J., Oppenheimer, J., Wert, E.C., Yoon, Y., 2007. Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals. Desalination 202, 156-181.
Spongberg, A.L., Witter, J.D., Acuna, J., Vargas, J., Murillo, M., Umana, G., Gomez, E., Perez, G., 2011. Reconnaissance of selected PPCP compounds in Costa Rican surface waters. Water Research 45, 6709-6717.
Stankovich, S., Dikin, D.A., Dommett, G.H.B., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.T., Ruoff, R.S., 2006. Graphene-based composite materials. Nature 442, 282-286.
Stankovich, S., Dikin, D.A., Piner, R.D., Kohlhaas, K.A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S.T., Ruoff, R.S., 2007. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558-1565.
Staudenmaier, L., 1898. Verfahren zur darstellung der graphitsäure. European Journal of Inorganic Chemistry 31, 1481-1487.
Subedi, B., Balakrishna, K., Joshua, D.I., Kannan, K., 2017. Mass loading and removal of pharmaceuticals and personal care products including psychoactives, antihypertensives, and antibiotics in two sewage treatment plants in southern India. Chemosphere 167, 429-437.
Summers, R.S., Roberts, P.V., 1984. SIMULATION OF DOC REMOVAL IN ACTIVATED CARBON BEDS. Journal of Environmental Engineering-Asce 110, 73-92.
Sun, Y.B., Yang, S.B., Zhao, G.X., Wang, Q., Wang, X.K., 2013. Adsorption of Polycyclic Aromatic Hydrocarbons on Graphene Oxides and Reduced Graphene Oxides. Chemistry-an Asian Journal 8, 2755-2761.
Sutter, P., 2009. EPITAXIAL GRAPHENE How silicon leaves the scene. Nature Materials 8, 171-172.
Tang, J.C., Huang, Y., Gong, Y.Y., Lyu, H.H., Wang, Q.L., Ma, J.L., 2016. Preparation of a novel graphene oxide/Fe-Mn composite and its application for aqueous Hg(II) removal. Journal of Hazardous Materials 316, 151-158.
Tixier, C., Singer, H.P., Oellers, S., Muller, S.R., 2003. Occurrence and fate of carbamazepine, clofibric acid, diclofenac, ibuprofen, ketoprofen, and naproxen in surface waters. Environmental Science & Technology 37, 1061-1068.
USEPA (2012) Pharmaceuticals and personal care products, The U.S. Environmental Protection Agency.
Vadivelan, V., Kumar, K.V., 2005. Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk. Journal of Colloid and Interface Science 286, 90-100.
Vulliet, E., Cren-Olive, C., 2011. Screening of pharmaceuticals and hormones at the regional scale, in surface and groundwaters intended to human consumption. Environmental Pollution 159, 2929-2934.
Wang, C., Li, H., Liao, S.H., Zheng, H., Wang, Z.Y., Pan, B., Xing, B.S., 2013. Coadsorption, desorption hysteresis and sorption thermodynamics of sulfamethoxazole and carbamazepine on graphene oxide and graphite. Carbon 65, 243-251.
Wang, H.M., Wu, Y.H., Ni, Z.H., Shen, Z.X., 2008. Electronic transport and layer engineering in multilayer graphene structures. Applied Physics Letters 92, 3.
Wang, J., Chen, Z.M., Chen, B.L., 2014. Adsorption of Polycyclic Aromatic Hydrocarbons by Graphene and Graphene Oxide Nanosheets. Environmental Science & Technology 48, 4817-4825.
Wang, R.Z., Huang, D.L., Liu, Y.G., Peng, Z.W., Zeng, G.M., Lai, C., Xu, P., Huang, C., Zhang, C., Gong, X.M., 2016. Selective removal of BPA from aqueous solution using molecularly imprinted polymers based on magnetic graphene oxide. Rsc Advances 6, 106201-106210.
Wang, Y., Shi, Z.X., Yin, J., 2011. Facile Synthesis of Soluble Graphene via a Green Reduction of Graphene Oxide in Tea Solution and Its Biocomposites. Acs Applied Materials & Interfaces 3, 1127-1133.
Wei, H., Yang, W.S., Xi, Q., Chen, X., 2012. Preparation of Fe3O4@graphene oxide core-shell magnetic particles for use in protein adsorption. Materials Letters 82, 224-226.
Wei, X., Huang, T., Yang, J.H., Zhang, N., Wang, Y., Zhou, Z.W., 2017. Green synthesis of hybrid graphene oxide/microcrystalline cellulose aerogels and their use as superabsorbents. Journal of Hazardous Materials 335, 28-38.
Westerhoff, P., Yoon, Y., Snyder, S., Wert, E., 2005. Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes. Environmental Science & Technology 39, 6649-6663.
Williams, G., Seger, B., Kamat, P.V., 2008. TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. Acs Nano 2, 1487-1491.
Wu, Y., Li, Z.M., Chen, J., Yu, C.G., Huang, X., Zhao, C.Z., Duan, L.F., Yang, Y., Lu, W., 2015. Graphene nanosheets decorated with tunable magnetic nanoparticles and their efficiency of wastewater treatment. Materials Research Bulletin 68, 234-239.
Wu, Z.B., Zhong, H., Yuan, X.Z., Wang, H., Wang, L.L., Chen, X.H., Zeng, G.M., Wu, Y., 2014. Adsorptive removal of methylene blue by rhamnolipid-functionalized graphene oxide from wastewater. Water Research 67, 330-344.
Xu, J., Wang, L., Zhu, Y.F., 2012. Decontamination of Bisphenol A from Aqueous Solution by Graphene Adsorption. Langmuir 28, 8418-8425.
Xue, Z.S., Zhao, S.L., Zhao, Z.H., Li, P., Gao, J.H., 2016. Thermodynamics of dye adsorption on electrochemically exfoliated graphene. Journal of Materials Science 51, 4928-4941.
Yang, S.T., Chang, Y.L., Wang, H.F., Liu, G.B., Chen, S., Wang, Y.W., Liu, Y.F., Cao, A.N., 2010. Folding/aggregation of graphene oxide and its application in Cu2+ removal. Journal of Colloid and Interface Science 351, 122-127.
Yang, X., Li, J.X., Wen, T., Ren, X.M., Huang, Y.S., Wang, X.K., 2013a. Adsorption of naphthalene and its derivatives on magnetic graphene composites and the mechanism investigation. Colloids and Surfaces a-Physicochemical and Engineering Aspects 422, 118-125.
Yang, Z., Yan, H., Yang, H., Li, H.B., Li, A.M., Cheng, R.S., 2013b. Flocculation performance and mechanism of graphene oxide for removal of various contaminants from water. Water Research 47, 3037-3046.
Yangali-Quintanilla, V., Sadmani, A., McConville, M., Kennedy, M., Amy, G., 2009. Rejection of pharmaceutically active compounds and endocrine disrupting compounds by clean and fouled nanofiltration membranes. Water Research 43, 2349-2362.
Yoon, K.Y., An, S.J., Chen, Y.S., Lee, J.H., Bryant, S.L., Ruoff, R.S., Huh, C., Johnston, K.P., 2013. Graphene oxide nanoplatelet dispersions in concentrated NaCl and stabilization of oil/water emulsions. Journal of Colloid and Interface Science 403, 1-6.
Zhang, C.L., Wu, L., Cai, D.Q., Zhang, C.Y., Wang, N., Zhang, J., Wu, Z.Y., 2013a. Adsorption of Polycyclic Aromatic Hydrocarbons (Fluoranthene and Anthracenemethanol) by Functional Graphene Oxide and Removal by pH and Temperature-Sensitive Coagulation. ACS Applied Materials & Interfaces 5, 4783-4790.
Zhang, C.Z., Li, T., Yuan, Y., Xu, J.Q., 2016. An efficient and environment-friendly method of removing graphene oxide in wastewater and its degradation mechanisms. Chemosphere 153, 531-540.
Zhang, K., Dwivedi, V., Chi, C.Y., Wu, J.S., 2010. Graphene oxide/ferric hydroxide composites for efficient arsenate removal from drinking water. Journal of Hazardous Materials 182, 162-168.
Zhang, Y.H., Tang, Y.L., Li, S.Y., Yu, S.L., 2013b. Sorption and removal of tetrabromobisphenol A from solution by graphene oxide. Chemical Engineering Journal 222, 94-100.
Zhang, Y.P., Li, H.B., Pan, L.K., Lu, T., Sun, Z., 2009. Capacitive behavior of graphene-ZnO composite film for supercapacitors. Journal of Electroanalytical Chemistry 634, 68-71.
Zhang, Y.X., Cheng, Y.X., Chen, N.N., Zhou, Y.Y., Li, B.Y., Gu, W., Shi, X.H., Xian, Y.Z., 2014. Recyclable removal of bisphenol A from aqueous solution by reduced graphene oxide-magnetic nanoparticles: Adsorption and desorption. Journal of Colloid and Interface Science 421, 85-92.
Zhao, C.Q., Xu, X.C., Chen, J., Wang, G.W., Yang, F.L., 2014a. Highly effective antifouling performance of PVDF/graphene oxide composite membrane in membrane bioreactor (MBR) system. Desalination 340, 59-66.
Zhao, G.X., Li, J.X., Ren, X.M., Chen, C.L., Wang, X.K., 2011a. Few-Layered Graphene Oxide Nanosheets As Superior Sorbents for Heavy Metal Ion Pollution Management. Environmental Science & Technology 45, 10454-10462.
Zhao, G.X., Ren, X.M., Gao, X., Tan, X.L., Li, J.X., Chen, C.L., Huang, Y.Y., Wang, X.K., 2011b. Removal of Pb(II) ions from aqueous solutions on few-layered graphene oxide nanosheets. Dalton Transactions 40, 10945-10952.
Zhao, J., Wang, Z.Y., White, J.C., Xing, B.S., 2014b. Graphene in the Aquatic Environment: Adsorption, Dispersion, Toxicity and Transformation. Environmental Science & Technology 48, 9995-10009.
Zhou, K.X., Bellenguez, C., Spencer, C.C.A., Bennett, A.J., Coleman, R.L., Tavendale, R., Hawley, S.A., Donnelly, L.A., Schofield, C., Groves, C.J., Burch, L., Carr, F., Strange, A., Freeman, C., Blackwell, J.M., Bramon, E., Brown, M.A., Casas, J.P., Corvin, A., Craddock, N., Deloukas, P., Dronov, S., Duncanson, A., Edkins, S., Gray, E., Hunt, S., Jankowski, J., Langford, C., Markus, H.S., Mathew, C.G., Plomin, R., Rautanen, A., Sawcer, S.J., Samani, N.J., Trembath, R., Viswanathan, A.C., Wood, N.W., Harries, L.W., Hattersley, A.T., Doney, A.S.F., Colhoun, H., Morris, A.D., Sutherland, C., Hardie, D.G., Peltonen, L., McCarthy, M.I., Holman, R.R., Palmer, C.N.A., Donnelly, P., Pearson, E.R., Go, D.U.D.P., Wellcome Trust Case Control, C., Investigators, M., 2011. Common variants near ATM are associated with glycemic response to metformin in type 2 diabetes. Nature Genetics 43, 117-U157.
Zwiener, C., Frimmel, F.H., 2000. Oxidative treatment of pharmaceuticals in water. Water Research 34, 1881-1885.
https://www.nhi.gov.tw/Content_List.aspx?n=5AA7CAFFF61CB16D&topn=3FC7D09599D25979,中華民國行政院衛生福利部中央健康保險署103年統計藥品使用量分析。
李齊旻(2016)氧化石墨烯含鐵複合吸附材料去除藥品氯苯那敏及亞硝胺生成潛勢之影響因子及效率探討,國立中山大學環境工程研究所碩士論文。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code