Responsive image
博碩士論文 etd-0812117-130339 詳細資訊
Title page for etd-0812117-130339
論文名稱
Title
氮化銦的載子冷卻及歐傑加熱研究
The Study of Carrier Cooling and Auger Heating in InN
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
50
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-24
繳交日期
Date of Submission
2017-09-12
關鍵字
Keywords
螢光上轉換、載子溫度、氮化銦、載子冷卻、歐傑加熱
auger heating, carrier cooling, carrier temperature, photoluminescence up-conversion, InN
統計
Statistics
本論文已被瀏覽 5692 次,被下載 0
The thesis/dissertation has been browsed 5692 times, has been downloaded 0 times.
中文摘要
本篇論文使用摻鈦藍寶石雷射加上螢光上轉換(photoluminescence Up-
conversion) 技術對氮化銦進行光致螢光(photoluminescence)光譜量測。從不同延遲
時間的光致螢光光譜可以得到載子溫度隨時間的變化,藉此來研究在相同激發載子濃度,而背景載子濃度不同的情況下的載子冷卻情況。觀察到背景載子濃度較高時,會使得初始載子溫度較低。以及激發的載子濃度相同時,聲學聲子的溫度也會接近。我們比較了有考慮歐傑加熱與沒有歐傑加熱時的載子冷卻模型,有歐傑加熱時的模型明顯可以得到更佳的結果。所以在總載子濃度高的情況下,我們認為能量損失率還要考慮歐傑復合造成的加熱影響,才能更好的解釋載子冷卻的情形。
Abstract
We use Ti: Sapphire Laser and photoluminescence up-conversion technique to study Time-resolved photoluminescence in InN. From Time-resolved photoluminescence, we obtain the carrier temperature vary with time. From time dependent carrier temperature, we can study carrier cooling in InN. In the same photoexcited carrier density, we found that when the background carrier density increase, the initial carrier temperature decrease.
By compare energy lose rate with auger heating and energy lose rate without auger heating, energy lose rate with auger heating will get better result. Therefore, in high carrier density, we consider that in order to explain the carrier cooling better we should consider auger heating.
目次 Table of Contents
論文審定書 ............................................................................................................... i
致謝 .......................................................................................................................... ii
摘要 ......................................................................................................................... iii
Abstract .................................................................................................................... iv
目錄 .......................................................................................................................... v
圖目錄 .................................................................................................................... vii
表目錄 ..................................................................................................................... ix
第一章 導論 ...................................................................................................... 1
1.1 前言 ...................................................................................................... 1
1.2 載子冷卻機制 ...................................................................................... 1
1.3 文獻探討 .............................................................................................. 2
1.4 歐傑復合與歐傑加熱 .......................................................................... 3
第二章 基本原理介紹 ...................................................................................... 6
2.1 導電帶中電子的能量釋放過程 .......................................................... 6
2.2 電子與電洞復合的釋放能量方式 ...................................................... 7
2.3 載子衰退率 .......................................................................................... 9
第三章 實驗原理與架設 ................................................................................ 12
3.1 非線性光學 ........................................................................................ 12
3.2 和頻光原理 ........................................................................................ 14
3.3 光生載子濃度的計算 ........................................................................ 16
3.4 實驗架構 ............................................................................................ 17
第四章 實驗結果與討論 ................................................................................ 20
4.1 樣品資訊 ............................................................................................ 20
4.2 不同延遲時間的螢光光譜 ................................................................ 22
4.3 載子濃度與時間關係 ........................................................................ 25
4.4 載子冷卻分析 .................................................................................... 26
第五章 結論 .................................................................................................... 37
參考文獻 ................................................................................................................ 38
參考文獻 References
1. T. L. Tansley and C. P. Foley, “Optical band gap of indium nitride”, Journal of Applied Physics 59, 3241 (1986).
2. F. Chen and A. N. Cartwright,” Time-resolved spectroscopy of recombination and relaxation dynamics in InN”, Appl. Phys. Lett. 83, 24 (2003).
3. S. Nargelas, R. Aleksiejūnas, M. Vengris, T. Malinauskas, K. Jarašiūnas, and E. Dimakis, “Dynamics of free carrier absorption in InN layers”, Appl. Phys. Lett. 95, 162103 (2009).
4. Y.E. Su,Y.C. Wen, H.M. Lee S. Gwo, and C.K. Sun,” Observation of sub-100 femtosecond electron cooling time in InN”, Appl. Phys. Lett. 96, 052108 (2010).
5. Y.C. Wen and C.-Y. Chen,” Ultrafast carrier thermalization in InN”, Appl. Phys. Lett. 89, 232114 (2006).
6. S. Nakamura,” InGaN-Based Blue/Green LEDs and Laser Diodes” Adv. Mater. 8(8), 689 (1996).
7. M. Binder, A. Nirschl, R. Zeisel, T. Hager, H.-J. Lugauer, M. Sabathil, D. Bougeard, J. Wagner, and B. Galler, “Identification of nnp and npp Auger recombination as significant contributor to the efficiency droop in (GaIn)N quantum wells by visualization of hot carriers in photoluminescence”, Appl. Phys. Lett. 103, 071108 (2013).
8. Xiao Meng, Lai Wanga, Zhibiao Hao, Yi Luob, Changzheng Sun, Yanjun Han, Bing Xiong, Jian Wang, and Hongtao Li, ” Study on efficiency droop in InGaN/GaN light-emitting diodes based on differential carrier lifetime analysis”, Appl. Phys. Lett. 108, 013501 (2016).
9. Zi-Hui Zhang, Wei Liu , Zhengang Ju, Swee Tiam Tan, Yun Ji, Zabu Kyaw, Xueliang Zhang, Liancheng Wang, Xiao Wei Sun, and Hilmi Volkan Demir, “InGaN/GaN multiple-quantum-well light-emitting diodes with a grading InN composition suppressing the Auger recombination”, Appl. Phys. Lett. 105, 033506 (2014).
10. Sang-Heon Han, Dong-Yul Lee, Sang-Jun Lee, Chu-Young Cho, Min-Ki Kwon, S. P. Lee, D. Y. Noh, Dong-Joon Kim, Yong Chun Kim, and Seong-Ju Park, “Effect of electron blocking layer on efficiency droop in InGaN/GaN multiple quantum well light-emitting diodes”, Appl. Phys. Lett. 94, 231123 (2009).
11. M. D. Yang, Y. W. Liu, J. L. Shen, C. W. Chen, G. C. Chi, T. Y. Lin, W. C. Chou, M. H. Lo, H. C. Kuo, and T. C. Lu, “Density-dependent energy relaxation of hot electrons in InN epilayers”, J. Appl. Phys. 105, 013526 (2009).
12. S.Z. Sun, Y.C. Wen, S.H. Guol, H.M.Lee, S. Gwo, andC.K. Sun,” Observation of
femtosecond carrier thermalization time in indium nitride”, J.Appl.Phys. 103, 123513 (2008).
13. D. J. Jang, G. T. Lin, C. L .Wu, C. L. Hsiao, and L.W. Tu,”Energy relaxation of InN thin films”, Appl. Phys. Lett. 91, 092108 (2007).
14. J. W. Pomeroya) and M. Kuball, “Phonon lifetimes and phonon decay in InN”, Appl. Phys. Lett. 86, 223501 (2005).
15. Klimov, V., Haring Bolivar, P. & Kurz, H. "Hot-phonon effects in femtosecond luminescence spectra ofelectron-hole plasmas in CdS. " Phys.Rev.B 52, 4728–4731 (1995).
16. D. J. Jang, G. T. Lin, C. L. Hsiao, L. W. Tu, and M. E. Lee,” Auger recombination in InN thin films” Appl. Phys. Lett. 92, 042101 (2008).
17. I. P. Seetoh, C. B. Soh, E. A. Fitzgerald, and S. J. Chua,” Auger recombination as the dominant recombination process in indium nitride at low temperatures during steady-state Photoluminescence” Appl. Phys. Lett. 102, 101112 (2013).
18. M. Achermann, A. P. Bartko, J. A. Hollingsworth, and V. I. Klimov,” The effect of Auger heating on intraband carrier relaxation in semiconductor quantum rods”, Nat. Phys. 2, 557 (2006).
19. E. Baghani, S. K. O. Leary, I. Fedin, D. V Talapin, M. Pelton,” Auger-Limited Carrier Recombination and Relaxation in CdSe Colloidal Quantum Wells”, J. Phys. Chem. Lett. 2015, 6, 1032.
20. Mingjie Li, Saikat Bhaumik, Teck Wee Goh, Muduli Subas Kumar, Natalia Yantara, Michael Grätzel, Subodh Mhaisalkar, Nripan Mathews and Tze Chien Sum, “Slow cooling and highly efficient extraction of hot carriers in colloidal perovskite nanocrystals”, Nature Communications 8, 14350 (2017)
21. J. Shah,” Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures”, Second enlarged edition, (Springer) (1999).
22. J. Shah, "In Hot Carriers in Semiconductor Nanostructures: Physics and Applications", (Academic, Boston) (1992).
23. 李嗣涔、管傑雄、孫台平,”半導體元件物理”,再版, (三民書局出版社) (1997).
24. E. F. Schubert, Light-Emitting Diodes, Cambridge University Press (2006).
25. D.Z. Garbuzov, “Reradiation effects, lifetimes and probabilities of band-to-band transitions in direct A3B5 compounds of GaAs type”, Journal of Luminescence 27, 109 (1982).
26. U. Strauss, W. W. Rijhle, and H. J. Queisser, “Band‐to‐band recombination in Ga0.5In0.5P”, Journal of Applied Physics 75, 8204 (1994).
27. Horng-Chang Liu, Chia-He Hsu, Wu-Ching Chou, Wei-Kuo Chen, and Wen-Hao Chang, “Recombination lifetimes in InN films studied by time-resolved excitation-correlation spectroscopy”, Phys. Rev. B 80, 193203 (2009).
28. 林冠廷,”氮化銦薄膜載子鬆弛之研究”, 國立中山大學物理學系研究所碩士論文(2008).
29. Mark Fox,” Optical Properties of Solids”, 2nd ed. (Oxford University Press ,2010).
30. J. Shah,” Ultrafast Luminescence Spectroscopy Using Sum Frequency Generation”, IEEE Journal of Quantum Electronics, 24, 2 (1988).
31. Frank L Pedrotti, Leno M Pedrotti, Leno S Pedrotti,” Introduction to Optics”, 3rd ed. (Pearson, New Jersey, 2006).
32. J. Wu and W. Walukiewicz, S. X. Li, R. Armitage, J. C. Ho, E. R. Weber, and E. E. Haller, Hai Lu and William J. Schaff, A. Barcz and R. Jakiela, “Effects of electron concentration on the optical absorption edge of InN”, Appl. Phys. Lett. 84, 2805 (2004).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.188.40.207
論文開放下載的時間是 校外不公開

Your IP address is 18.188.40.207
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code