Responsive image
博碩士論文 etd-0813107-142336 詳細資訊
Title page for etd-0813107-142336
論文名稱
Title
應用整合型軟體代理人支援行動用戶活動行程的協商
Mobile Activity Coordination through Integrating Physical and Simulated Software Agents
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
145
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-07-24
繳交日期
Date of Submission
2007-08-13
關鍵字
Keywords
衝突解決、行動通訊環境、多準則情境相依的分散式限制最佳化問題、彈性協商機制、實體代理人、模擬代理人、兩階段式分散最佳化迫近法
flexible coordination mechanism, Two Stage Distributed Optimality Reaching Approach, physical agents, simulated agents, multi-criteria context-dependent DCOP, conflict resolution, mobile communication environment
統計
Statistics
本論文已被瀏覽 5708 次,被下載 1170
The thesis/dissertation has been browsed 5708 times, has been downloaded 1170 times.
中文摘要
隨著無線通訊服務的日趨普及,行動通訊用戶可以透過行動裝置很輕易地與任何的行動服務供應者或是其他行動通訊用戶進行對談溝通。在這樣的行動通訊環境中,具行動運算能力的行動裝置便成為行動通訊用戶在計劃、管理、執行與控制個人活動排程上的輔助利器。同時,由於透過行動裝置,行動通訊用戶能隨時隨地獲知所處環境的變化,因此,行動通訊用戶可以彈性地根據所處環境的狀態更動或調整其所設定的目標,並且據之進行決策以降低環境變化所造成的衝擊。在行動通訊的環境中,用戶個人活動排程中所從事的一連串活動是環境中的服務供應者所提供,而服務供應者所提供的服務可視為實體環境中的有限資源。由於該資源無法無窮盡地供給以滿足所有用戶的需求,因此當行動通訊用戶在規劃、更動或調整其個人的活動行程並追求個人目標最佳化時,資源不足所引發的衝突將可能常常發生。
本研究聚焦在解決行動通訊環境中因為資源不足或限制所引發的衝突問題。在本研究中,此類衝突問題被形塑成「多準則情境相依的分散式限制最佳化問題」 (multi-criteria context-dependent DCOP)。「多準則情境相依的分散式限制最佳化問題」為一複雜而高度動態的問題,問題的聯合最佳化(joint optimization)具有隨情境而改變的特性。為了解決此類問題,本研究計畫提出了一個整合性代理人系統架構SPA及一套兩階段式的分散最佳化迫近法2S-DORA,輔助行動通訊用戶在遭遇衝突時能夠自動地互相進行協商以降低衝突發生的影響,同時保持最佳化狀態。這個整合性代理人系統架構SPA運用了模擬代理人與實體代理人以強化行動通訊用戶在感測所處環境變化、分析所面對問題、進行推論判斷及社交溝通的能力。兩階段式的分散最佳化迫近法2S-DORA則充分利用了代理人的能力,有效地協助行動通訊用戶對環境的變化及意外發生做出應變。
本研究以自助旅行者的問題為例,把自助旅行者間最常遇到的旅遊計畫衝突問題形塑成「多準則情境相依的分散式限制最佳化問題」,並演示SPA及2S-DORA如何解決這個問題。本研究最後設計了五個實驗評估SPA及2S-DORA的效能表現。
Abstract
As wireless communication services get more and more pervasively available, mobile people can easily interact with service providers and handily communicate with each other through mobile devices. In the mobile environment, mobile users can plan their activity schedules and run their schedules with the assistance of mobile devices. When mobile users are engaged in their activities, they can instantly perceive contextual information and their activity schedules therefore tend to be context dependent, i.e., mobile users may alter their objectives and decision makings as soon as the environmental context varies. Besides, for a mobile user, once any exception happens, he/she is apt to adapt his/her activity schedule to reduce the impact of the exception. In the mobile environment, since the environmental resources are limited and can’t satisfy all mobile users’ demands, conflicts are likely to occur while mobile users plan, alter or adapt their personal activity schedules. This study concentrates itself on resolving the conflicts. This conflict problem is formulated as a multi-criteria context-dependent DCOP (distributed constraint optimization problem). This problem is complicated and highly dynamic, and the joint optimality to this problem might be time-variant. This study proposes an integrated agents system SPA and a novel problem solving approach 2S-DORA to enable mobile users to coordinate their activities to maintain optimality. The SPA, which integrates the Simulated and Physical Agents, is employed to enhance mobile users’ sensory, analytic, reasoning and social abilities. The 2S-DORA takes advantage of the SPA abilities to help mobile users quickly and effectively adapt themselves to the context variations and to the exceptions. This study takes a traveling backpacker problem as an example to demonstrate how the proposed SPA and 2S-DORA contribute to solve the multi-criteria context-dependent DCOP. Five experiments finally are designed to evaluate the performance of the application of SPA and 2S-DORA.
目次 Table of Contents
致 謝 i
Abstract ii
中文摘要 iii
List of Symbols vi
List of Figures viii
List of Tables x

Chapter 1 Introduction 1
1.1 Overview 1
1.2 Research Motivation and Objective 4
1.3 Solving MUCP 4
1.4 Assumption and Limitation 5
1.5 Experimental Facilities 6
1.6 Dissertation Organization 6
Chapter 2 Related Works 7
2.1 Enabling Technologies and Emerging Applications for Mobile Activities 7
2.2 Multi-agent Technologies 13
2.3 Multi-Criteria Optimization Problem 15
2.4 DCOP and Techniques for Solving DCOP 16
2.5 Agent Based Coordination Mechanisms 18
2.6 Scheduling Problems and Traveling Salesman Problems 19
2.7 Computational Intelligence 24
2.8 Forward Chaining Method 26
2.9 Pareto Improvement and Convergence to Global Optimality 26
Chapter 3 Research Problem Demonstration and Formulation 28
3.1 Simplified Example to Demonstrate Research Problem 28
3.2 Plan and Coordination of Activity Schedules 32
3.2.1 Planning Activity Schedules Individually 32
3.2.2 Improving Activity Schedules Cooperatively 35
3.2.3 Context Variation 39
3.2.4 Exception Happening 42
3.3 Research Problem Formulation – Multi-Criteria Context-Dependent DCOP 43
3.4 Characterization of Multi-Criteria Context-Dependent DCOP 49
3.5 Requirements for Solving Multi-Criteria Context-Dependent DCOP 51
Chapter 4 SPA: Integrated Agents System 53
4.1 Characteristics of Simulated and Physical Agents in Mobile Environment 53
4.2 Framework of SPA 54
4.3 Multi Agents Platforms Employed 58
5.1 Demonstration of Solving Multi-Criteria DCOP 62
5.2 Development of 2S-DORA 64
5.3 Reservation Exchange Protocol 82
5.4 SPA and Built-in 2S-DORA 84
Chapter 6 Traveling backpacker problem 88
6.1 Traveling backpacker problem 88
6.2 Formulation of Traveling backpacker problem 91
Chapter 7 Experimental Design 95
7.1 Settings 95
7.2 Metrics to Measure Performance 97
7.3 Experimental Design 98
Chapter 8 Experimental Results and Discussions 101
8.1 Experimental Results 101
8.2 Discussions 114
Chapter 9 Conclusion and Future Research 120
9.1 Conclusion 120
9.2 Future Research 123
Reference 126
參考文獻 References
AHMAD, N. (2004) The humanoid Robot Cog. Crossroads, 10, pp.3-3.
ALI, A. & KENNINGTON, J. (1986) The Asymmetric m-Traveling Salesmen Problem: a Duality Based Branch-and-Bound Algorithm. Discrete Applied Mathematics, pp.259–76.
BANKSTON, J. B. & HARNETT, R. M. (2000) An heuristic algorithm for a multi-product, single machine capacitated production scheduling problem. Computers & Operations Research, 27, pp. 77-92.
BANTZ, D. F., BISDIKIAN, C., CHALLENER, D., KARIDIS, J. P., MASTRIANNI, S., MOHINDRA, A., SHEA, D. G. & VANOVER, M. (2003) Autonomic personal computing. IBM Systems Journal, 42, pp.165-176.
BEKTAS, T. (2006) The Multiple Traveling Salesman Problem: an Overview of Formulations and Solution Procedures. The international journal of management science, pp. 209-219.
BELLMORE, M. & HONG, S. (1974a) Transformation of multi salesmen problem to the standard traveling salesman problem. Journal of Association for Computing Machinery, 21, pp.500-504.
BELLMORE, M. & HONG, S. (1974b) Transformation of multisalesmen problem to the standard traveling salesman problem. Journal of Association for Computing Machinery, 21, pp.500-504.
BOND, A. H. & GASSER, L. (1988) Readings in Distributed Artificial Intelligence, San Mateo, CA., Morgan Kaufman Publishers.
BOWRING, E., TAMBE, M. & YOKOO, M. (2005) Distributed Multi-Criteria Coordination in Multi-Agent Systems. Workshop on Declarative Agent Languages and Technologies at the Fourth International Joint Conference on Agents and Multiagent Systems (DALT-05). Utrecht, Netherlands.
BRUSTOLONI, J. C. (1991) Autonomous agents: characterization and requirements. Carnegie Mellon Technical Report CMU-CS-91-204. Pittsburgh, Carnegie Mellon University.
BUI, L. T., ABBASS, H. A. & ESSAM, D. (2006) Local Models: An Approach to Distributed Multiobjective Optimization. The Artificial Life and Adaptive Robotics Laboratory.
BURRELL, J. & GAY, G. K. (2003) E-graffiti: evaluating real world use of a context aware systems. Interacting with Computers, 14, pp. 301-312.
CHIU, D. K. W. & LEUNG, H.-F. (2005) Towards ubiquitous tourist service coordination and integration: a multi-agent and semantic web approach. 7th international conference on Electronic commerce. ACM Press.
DAVIDSSON, P. (2002) Agent Based Social Simulation: A Computer Science View. Journal of Artificial Societies and Social Simulation.
DEY, A. (2001) Understanding and using context. Personal and Ubiquotous Computing.
DEY, A. K. & ABOWD, G. D. (1999) Towards a Better Understanding of Context and Context Awareness. 1st International Symposium on Handheld and Ubiquitous Computing (HUC'99). Karlsruhe, Germany.
DURFEE, E. H. & LESSER, V. (1989) Negotiating Task Decomposition and Allocation Using Partial Global Planning, San Francisco, Calif., Morgan Kaufmann.
FELDMANN, M. & BISKUP, D. (2003) Single-machine scheduling for minimizing earliness and tardiness penalties by meta-heuristic approaches. Computers and Industrial Engineering, 44, pp.307-323.
FOGEL, D. (1990) A parallel processing approach to a multiple traveling salesman problem using evolutionary programming. 4th annual symposium on parallel processing. Fullerton, CA.
FONER, L. N. (1993) What's an Agent, Anyway? A Sociological Case Study. Agents Group, MIT Media Lab.
FUJINAMI, K., YAMABE, T. & NAKAJIMA, T. (2004) Take me With You: a Case Study of Context-Aware Application Integrating Cyber and Physical Spaces. The 2004 ACM symposium on Applied computing.
GAJSKI, D. D. & RAMACHANDRAN, L. (1994) Introduction to High-Level Synthesis. IEEE Design & Test of Computers, 11, 44-54.
GANEK, A. G. & CORBI, T. A. (2003) The Dawning of the Autonomic Computing Era. IBM Systems Journal, 42, pp.5-18.
GELLERSEN, H. W., SCHMIDT, A. & BEIGL, M. (2002) Multi-sensor context-awareness in mobile devices and smart artifacts. Mobile Networks and Applications, 7, pp. 341-351.
GILBERT, K. & HOFSTRA, R. (1992) A new multiperiod multiple traveling salesman problem with heuristic and application to a scheduling problem. Decision Sciences, 23, 250–259.
GOLDSTEIN, M. (1990) Self-organizing feature maps for the multiple traveling salesmen problem. IEEE international conference on neural network. San Diego, CA.
GROMICHO, J., PAIXÃO, J. & BRANCO, I. (1992) Exact Solution of Multiple Traveling Salesman Problems. Berlin: Springer.
GRUBER, T. (1993) A translation approach to portable ontologies. Knowledge Acquisition, 5, pp. 199-220.
GUOXING, Y. (1995) Transformation of multidepot multisalesmen problem to the standard traveling salesman problem. Journal of Operational Research, 81, pp.557-560.
GYSELINCKX, B., VAN HOOF, C., RYCKAERT, J., YAZICIOGLU, R. F., FIORINI, P. & LEONOV, V. (2005) Human++: autonomous wireless sensors for body area networks. Custom Integrated Circuits Conference, 2005. IEEE.
HAGITA, N., KOGURE, K., MAEIA, K. & SUMI, Y. (2003) Collaborative Capturing of Experiences with Ubiquitous Sensors and Communication Robots. Proceedings of the 2003 IEEE International Conrereoee on Robotics & Automitian. Taipei, Taiwan, IEEE.
HALL, A. & TAUBIG, H. (2003) Comparing push and pull-based broadcasting. Second International Workshop on Experimental and Efficient Algorithms. Monte Verità, Ascona, Switzerland.
HAYES-ROTH, B. (1995) An Architecture for Adaptive Intelligent Systems. Artificial Intelligence: Special Issue on Agents and Interactivity, 72, pp.329-365.
HONG, S. & PADBERG, M. (1977) A note on the symmetric multiple traveling salesman problem with fixed charges. Operations Research, 25, pp.871–874.
HSU, C., TSAI, M. & CHEN, W. (1991) A study of feature-mapped approach to the multiple travelling salesmen problem. IEEE International Symposium on Circuits and Systems, 3, pp.1589-92.
ISHIGURO, H. (2002) Toward interactive humanoid robots: a constructive approach to developing intelligent robots. first international joint conference on Autonomous agents and multiagent systems. ACM Press.
JENNINGS, N. R., SYCARA, K. & WOOLDRIDGE., M. (1998) A roadmap of agent research and development. Autonomous Agents and Multi-Agent Systems, 1, 7-38.
JESSUP, L. M. & ROBEY, D. (2002) The relevance of social issues in ubiquitous computing environments. Communications of the ACM, 45, pp. 88-91.
JONKER, R. & VOLGENANT, T. (1988) An improved transformation of the symmetric multiple traveling salesman problem. Operations Research, 36, pp.163-167.
JURVANSUU, M., AHONEN, P., PENTIKAINEN, H. & AILISTO, H. (2006) Mobile Technology Trends in Ten Years. The Ministry of Science, Technology and Innovation, Denish.
KAISER, G., GROSS, P., KC, G., PAREKH, J. & VALETTO, G. (2002) An approach to autonomizing legacy systems. ACM Workshop on Self-Healing, Adaptive and self-MANaged Systems (SHAMAN). New York City.
KEPHART, J. O. & CHESS, D. M. (2003) The Vision of Autonomic Computing. IEEE Computer, 36, pp.41-50.
KRAUSE, S., MORAIS, D. A. S. F., MAGEDANZ, T., POPESCUZELETIN, R., FALSARELLA, O. M. & MENDEZ, C. R. A. (1997) MAGNA -- A DPE-Based Platform for Mobile Agents in Electronic Service Markets. Third International Symposium on Autonomous Decentralized Systems.
KWON, O., YOO, K. & SUH, E. (2005) UbiDSS: a proactive intelligent decision support system as an expert system deploying ubiquitous computing technologies. Expert Systems with Applications, 28, pp. 149-161.
LAPORTE, G. & NOBERT, Y. (1980) A Cutting Planes Algorithm for the m-Salesmen Problem. Journal of the Operational Research Society, pp.1017–1023.
LAPORTE, G., NOBERT, Y. & TAILLEFER, S. (1988) Solving a family of multi-depot vehicle routing and location-routing problems. Transportation Science, 22, pp.161-172.
LEE, K. K. & LIANG, B. (2004) An Intelligent Service-Based Network Architecture for Wearable Robots. IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, 34.
LEE, K. K., YU, M. & XU, Y. (2003) Modeling of human walking trajectories for surveillance. Intelligent Robots and Systems, 2003. (IROS 2003).
LIN, F.-R. & LIN, S.-M. (2006) Enhancing the Supply Chain Performance by Integrating Simulated and Physical Agents into Organizational Information Systems. Journal of Artificial Societies and Social Simulation, 9.
LIU, J. & YAO, C. (2004) Rational competition and cooperation in ubiquitous agent communities. Knowledge-Based Systems, 17, pp. 189-200.
LIU, S. Q., ONG, H. L. & NG, K. M. (2005) Metaheuristics for minimizing the makespan of the dynamic shop scheduling problem. Advances in Engineering Software, 36, pp. 199-205.
LUGER, G. F. & STUBBLEFIELD, W. A. (1997) Artificial Intelligence: Structures and Strategies for Complex Problem Solving, Boston, MA, USA, Addison-Wesley Longman Publishing Co., Inc.
LUNA, F. & STEFANSSON, B. (2000) Economic Simulation in Swarm: Agent-based Modeling and Object Oriented Programming, Boston, Kluwer Academic Publishers.
MAES, P. (1995) Artificial life meets entertainment: life like autonomous agents. Communications of the ACM, 38, pp. 108-114.
MAILLER, R. & LESSER, V. (2004) Solving Distributed Constraint Optimization Problems Using Cooperative Mediation. Third International Joint Conference on Autonomous Agents and Multiagent Systems. IEEE Computer Society.
MALONE, T. W. & CROWSTON, K. (1994) The Interdisciplinary Study of Coordination. ACM Computing Survey, 26.
MATOSSIAN, V. & PARASHAR, M. (2003) Autonomic Optimization of an Oil Reservoir using Decentralized Services. 1st International Workshop on Heterogeneous and Adaptive Computing-- Challenges for Large Applications in Distributed Environments (CLADE 2003). Seattle, WA, USA, Computer Society Press.
MICHAHELLES, F. & SAMULOWITZ, M. (2002) Smart CAPs for Smart Its – Context Detection for Mobile Users. Personal and Ubiquitous Computing, 6, pp. 269-275.
MINAR, N., BURKHART, R., LANGTON, C. & ASKENAZI, M. (1996) The Swarm simulation system: a toolkit for building multi-agent simulations. http://www.swarm.org.
MINGOZZI, A., MANIEZZO, V., RICCIARDELLI, S. & BIANCO, L. (1998) An Exact Algorithm for the Resource-Constrained Project Scheduling Problem Based on a New Mathematical Formulation. 44, pp. 714 - 729.
MODARES, A., SOMHOM, S. & ENKAWA, T. (1999) A self-organizing neural network approach for multiple traveling salesman and vehicle routing problems. International Transactions in Operational Research, 6, pp.591-606.
MODI, P. J., SHEN, W. M., TAMBE, M., YOKOO, M. & JOURNAL, A. I. (2005) ADOPT: Asynchronous distributed constraint optimization with quality guarantees. Artificial Intelligence Journal, 161, pp.149–180.
MOKOTOFF, E. (2004) An exact algorithm for the identical parallel machine scheduling problem. European Journal of Operational Research, 152, pp. 758-769.
NIEMELÄ, E. & LATVAKOSKI, J. (2004) Survey of requirements and solutions for ubiquitous software. 3rd international conference on Mobile and ubiquitous multimedia. ACM.
O'HARE, G. M. P. & O'GRADY, M. J. (2003) Gulliver's Genie: a multi-agent system for ubiquitous and intelligent content delivery. Computer Communications, 26, pp.1177-1187.
OLIVEIRA, E., FISCHER, K. & STEPANKOVA, O. (1999) Multi-agent systems: Which research for which applications. Journal of Robotics and Autonomous Systems, 27, pp. 91-106.
PETCU, A. & FALTINGS, B. (2005) A scalable method for multiagent constraint optimization. 19th International Joint Conference on Artificial Intelligence. Edinburgh, Scotland.
PIERRE, S. (2001) Mobile computing and ubiquitous networking: concepts, technologies and challenges. Telematics and Informatics, 18, pp. 109-131.
PINEDO, M. (1995) Scheduling: Theory, Algorithms, and Systems, Englewood Cliffs, NJ, Prentice Hall.
POTVIN, J., LAPALME, G. & ROUSSEAU, J. (1989) A generalized k-opt exchange procedure for the MTSP. Information Fusion, 27, pp.474-481.
QIN, H. & ZHOU, X. (2005) Context aware sensornet. Proceedings of the 3rd international workshop on Middleware for pervasive and ad-hoc computing MPAC '05. ACM Press.
RAJENDRAN, C. (1995) Heuristics for scheduling in flowshop with multiple objectives. European Journal of Operational Research, 82, pp. 540-555.
RAO, M. (1980) A note on the multiple traveling salesman problem. Operations Research, 28, pp.628-632.
RAO, S. (1991) Optimization theory and application, New Delhi, Wiley Eastern Limited.
RICHARDS, G. & WILSON, J. (2004) The global nomad:backpacker travel in theory and practice, Clevedon England, Buffalo N.Y.
RICHMAN, G. & NAPOLITANO, A. (October 2000) The Virtual Home Environment – Architectures and Trials. IST Mobile Summit. Galway, Ireland.
RIEKKI, J., HUHTINEN, J., ALA-SIURU, P., ALAHUHTA, P., KAARTINEN, J. & RÖNING, J. (2003) Genie of the net, an agent platform for managing services on behalf of the user. Computer Communications, 26, pp. 1188-1198.
RUSSELL, J. & NORVIG, P. (2003) Artificial Intelligence: A Modern Approach, Prentice Hall.
RUSSELL, R. (1977) An effective heuristic for the m-tour traveling salesman problem with some side conditions. Operations Research, 25, pp.517–24.
SANDHOLM, T. W. (1996) Negotiation among Self-Interested Computationally Limited Agents. PhD thesis, University of Massachusetts, Amherst.
SASHIMA, A., IZUMI, N. & KURUMATANI, K. (2004) Bridging Coordination Gaps between Devices, Services, and Humans in Ubiquitous Computing. International Workshop on Agents for Ubiquitous Computing, 3rd International Joint Conference on Autonomous Agents and Multi Agent Systems.
SATYANARAYANAN, M. (1996) Fundamental challenges in mobile computing. 15th annual ACM symposium on Principles of distributed computing.
SCHMIDT, A., BEIGL, M. & GELLERSEN, H. W. (1998) There is more to context than location. Intl. Workshop on Interactive Applications of Mobile Computing (IMC98). Rostock, Germany.
SOFGE, D., SCHULTZ, A. & DEJONG, K. (2002) Evolutionary computational approaches to solving the multiple traveling salesman problem using a neighborhood attractor schema. Lecture notes in computer science, pp.151-160.
SOMHOM, S., MODARES, A. & ENKAWA, T. (1999) Competition-based neural network for the multiple traveling salesmen problem with minmax objective. Computers and Operations Research, 26, pp.395-407.
SONG, C., LEE, K. & LEE, W. D. (2003) Extended simulated annealing for augmented TSP and multi-salesmen TSP. the international joint conference on neural networks.
T'KINDT, V. & BILLAUT, J.-C. (2002) Multicriteria Scheduling Problems. IN EHRGOT, M. & GANDIBLEUX, X. (Eds.) Multiple Criteria Optimization: State of the Art Annotated Bibliographic Surveys. 1 ed. Dordrecht, Kluwer Academic.
T'KINDT, V. & BILLAUT, J.-C. (2006) Introduction to Scheduling. Multicriteria Scheduling: Theory, Models and Algorithms. 2 ed. Berlin, Springer.
TAFAT, A., COURANT, M. & HIRSBRUNNER, B. (2005) Coordination models, languages and applications (CM): Implicit environment-based coordination in pervasive computing. 2005 ACM symposium on Applied computing. ACM Press.
TAKEMOTO, M., OH-ISHI, T., IWATA, T., YAMATO, Y., TANAKA, Y., SHINNO, K., TOKUMOTO, S. & SHIMAMOTO, N. (2004) A service-composition and service-emergence framework for ubiquitous-computing environments. Applications and the Internet Workshops.
TANG, L., LIU, J., RONG, A. & YANG, Z. (2000) A multiple traveling salesman problem model for hot rolling scheduling in Shangai Baoshan Iron & Steel Company. European Journal of Operational Research, 124, pp.267-82.
WACHOLDER, E., HAN, J. & MANN, R. (1989) A neural network algorithm for the multiple traveling salesmen problem. Biology in Cybernetics, 61, pp.11-19.
WANG, J. (2001) Distributed multi-criteria optimization using GAs and game theory and related applications to high lift CFD problems in aerodynamics. University of Paris France.
WEIDMANN, N. B. & GIRARDIN, L. (2005) Technical note: evaluating java development kits for agent-based modeling. Journal of Artificial Societies and Social Simulation.
WEISER, M. (1991) The Computer for the Twenty-First Century. Scientific American, pp. 94-104.
WEISER, M. (1996) Ubiquitous computing. http://www.ubiq.com/hypertext/weiser/UbiHome.html.
WEISS, G. (1999) Multiagent systems: a modern approach to distributed artificial intelligence, London, England, MIT Press.
WITTNER, O., HEEGAARD, P. E. & HELVIK, B. E. (2002) Swarm Based Distributed Search in the AMIGOS Environment. DEPARTMENT OF TELEMATICS, NTNU.
WOOLDRIDGE, M. & JENNINGS, N. R. (1995) Agent theories, architectures, and languages: a survey. IN WOOLDRIDGE, M. & N.R., J. (Eds.) Intelligent Agents. Berlin: Springer-Verlag.
XIONG, N. & SVENSSON, P. (2001) Multi-Sensor Management for Information Fusion: Issues and Approaches. Information Fusion, 3, pp. 163-182.
YU, Z., JINHAI, L., GUOCHANG, G., RUBO, Z. & HAIYAN, Y. (2002) An Implementation of Evolutionary Computation for Path Planning of Cooperative Mobile Robots. 4th world congress on intelligent control and automation, 3, pp.1798-1802.
ZHANG, T., GRUVER, W. & SMITH, M. (1999) Team Scheduling by Genetic Search. IN MATERIALS, N. I. C. O. I. P. A. M. O. (Ed.).
ZIMMERMAN, T. (1996) Personal Area Networks: Near-field intrabody communication. IBM Systems Journal, 35.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code