Responsive image
博碩士論文 etd-0813107-155753 詳細資訊
Title page for etd-0813107-155753
論文名稱
Title
橢圓錐狀光纖透鏡參數對耦光效率之分析
The Effect of Elliptic-Conical Lensed Fiber Parameters on the Coupling Efficiency
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
106
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-07-13
繳交日期
Date of Submission
2007-08-13
關鍵字
Keywords
橢圓錐狀透鏡光纖、雷射二極體、耦光效率、曲率半徑
elliptic-conical lensed fiber, coupling efficiency, radius of curvature, laser diode
統計
Statistics
本論文已被瀏覽 5694 次,被下載 20
The thesis/dissertation has been browsed 5694 times, has been downloaded 20 times.
中文摘要
本研究主要探討橢圓錐狀透鏡光纖(Elliptic-conical lensed fiber)製程中,光纖端面結構與熔域大小對於透鏡曲率半徑與高功率980nm雷射二極體與單模光纖間耦光效率之影響。文中首先使用有限元素套裝軟體MARC模擬光纖在高溫爐中之熱傳行為,以自由對流方式加熱熔燒光纖尖端,並分析加熱時間與熔融區域的關係。達熔點時,光纖端面為最小表面能量之非對稱曲面,固化後於光纖尖端形成微透鏡結構,其表面曲率分布由數值分析軟體Surface Evolver預測。建構其耦光模型於光學設計軟體ZEMAX中模擬980nm雷射與橢圓錐狀透鏡的耦光效率,並配合田口方法探討不同端面參數與熔燒區域形成之微透鏡表面曲率對於模態匹配的改善,為增加耦光效率提供有效優化光纖製程參數的辦法。並評估雷射模組構裝中銲後位移造成對準失效之耦光損失。
Abstract
A simulation scheme is proposed to analyze the effects of elliptic-conical lensed fiber parameters on the coupling efficiency between a 980nm laser diode and single-mode fiber(SMF). The variation of fiber tip shapes with different melting zone volumes was investigated in this thesis. The heat-transfer finite element model in MARC package is employed to simulate the temperature distribution during the melting process. The free convection is considered in predicting the melting zone. Due to the surface tension, a round tip may be solidificated. In this study an elliptical tip lens is expected to improve the coupling efficiency. The microlens shapes with different radius of curvature is simulated with the software of Surface Evolver. The coupling efficiency of 980nm laser source and different elliptic-conical lensed fiber is calculated by utilizing the ZEMAX optical analysis software. The Taguchi method is employed to evaluate the effect of tip shape parameters on the coupling efficiency. The optimal elliptic-conical lensed fiber parameters has also been proposed. The efficiency loss introduced from the misalignments in laser module packaging has also been discussed in this study.
目次 Table of Contents
目錄………………………………………………………………………... i
圖目錄……………………………………………………………………... iii
表目錄……………………………………………………………………... vi
符號說明…………………………………………………………………... vii
摘要………………………………………………………………………... xii
Abstract……………………………………………………………………. xiii
第一章 緒論………………………………………………………………. 1
1-1 前言………………………………………………………… 1
1-1-1 光纖通訊發展………………………………………. 1
1-1-2 光纖…………………………………………………. 2
1-1-1 光訊號放大技術發展及現況………………………. 3
1-2 研究動機…………………………………………………… 5
1-3 文獻回顧…………………………………………………… 6
1-4 組織與章節………………………………………………… 8
第二章 理論基礎與數值析………………………………………………. 19
2-1 雷射與雷射二極體………………………………………… 19
2-2 高斯光束…………………………………………………… 20
2-3 耦光理論模型……………………………………………… 21
2-4 數值分析…………………………………………………… 22
2-4-1 預熔區域分析………………………………………. 22
2-4-2 微透鏡形狀預測……………………………………. 23
2-4-3 耦光效率分析………………………………………. 26
第三章 橢圓錐狀光纖透鏡製程…………………………………………. 34
3-1 橢圓錐狀光纖……………………………………………… 34
3-1-1 光纖研磨機台………………………………………. 34
3-1-2 橢圓錐狀光纖端面成型原理………………………. 34
3-2 光纖熔燒與微透鏡成型之關係…………………………… 37
3-2-1電弧熔燒…………………………………………….. 37
3-2-2 高溫爐加熱方式之熱傳分析………………………. 37
第四章 橢圓錐狀光纖透鏡參數分析與討論……………………………. 56
4-1 橢圓錐狀光纖之幾何模型………………………………… 56
4-2 橢圓錐狀光纖透鏡參數優化……………………………… 56
4-3 耦光效率與曲率半徑分析………………………………… 59
4-3 耦光效率與曲率半徑分析………………………………… 62
第五章 結論………………………………………………………………. 87
5-1 結論………………………………………………………… 87
5-2 未來研究…………………………………………………… 88
參考文獻…………………………………………………………………... 89
參考文獻 References
[1] S. B. Poole, D. N. Payne, R. J. Mears, M. E. Fermann, and R. I. Laming, “Fabrication and Characterization of Low-Loss Optical Fibers Containing Rare-Earth Ions, ” Journal of Lightwave Technology, vol.LT-4, pp. 870-876, 1986.

[2] E. Desurvire, J. R. Simpson, and P. C. Becker, “High-Gain Erbium-Doped Traveling-Wave Fiber Amplifier, ” Optics Letters, vol.12, pp. 888-890,1987.

[3] M. Yamada, M. Shimizu, T. Takeshita, M. Okayasu, M. Horiguchi, S. Uehara, E. Sugita, “Er3+-Doped Fiber Amplifier Pumped by 0.98 μm Laser Diodes, ” IEEE Photonics Technology Letters, vol.1, pp. 422-424, 1989.

[4] M. Yamada, M. Shimizu, M. Okayasu, T. Takeshita, M. Horiguchi, Y. Tachikawa, and E.Sugita, “Noise Characteristics of Er3+-Doped Fiber Amplifiers Pumped by 0.98 and 1.48 μm Laser Diodes, ” IEEE Photonics Technology Letters, vol.2, pp. 205-207, 1990.

[5] R. E. Smith, C. T. Sullivan, G. A. Vawter, G. R. Hadley, J. R. Wendt, M. B. Snipes, and J. F. Klem “Reduced Coupling Loss Using a Tapered-Rib Adiabatic-Following Fiber Coupler, ” IEEE Photonics Technology Letters, vol.8, pp. 1052-1054, 1996.

[6] Y. Fu, N. K. A. Bryan, and O. N. Shing, “Integrated Micro-Cylindrical Lens with Laser Diode for Single-Mode Fiber Coupling, ” IEEE Photonics Technology Letters, vol.12, pp. 1213-1215, 2000.

[7] H. M. Presby, N. Amitay, and A. F. Benner, “Laser-to-Fiber Coupling via Optical Fiber Up-Tapers, ” IEEE Journal of Lightwave Technology, vol.7, no.2, pp. 274-278, 1989.

[8] J. E. Livas, S. R. Chinn, E. S. Kintzer, J. N. Walpole, C. A. Wang, and L. J. Missaggia, “High-Power Erbium-Doped Fibre Amplifier with 975nm Tapered-Gain-Region Laser Pumps, ” Electronics Letter, vol.30, pp. 1054-1055, 1994.

[9] S. Y. Huang, C. E.Gaehe, K. A.Miller, G. T. Wiand, and T. S. Stakelon, “High Coupling Optical Design for Laser Diodes with Large Aspect Ratio, ” IEEE Transactions on Advanced Packaging, vol.23, pp. 165-169, 2000.

[10] L. G. Cohen and M. V. Schneider, “Microlenses for Coupling Junction Lasers to Optical Fibers, ” Applied Optics, vol.13, pp. 89-94, 1974.

[11] H. Kuwahara, M. Sasaki and N. Tokoyo, “Efficient Coupling from Semiconductor Lasers into Single-mode Fibers with Tapered Hemispherical Ends, ” Applied Optics, vol. 19, no. 15, pp. 2578-2583, 1980.

[12] J. I. Yamada, Y. Murakami, J. I. Sakai, and T. Kimura, “Characteristics of a Hemispherical Microlens for Coupling Between a Semiconductor Laser and Single-Mode Fiber, ” IEEE Journal of Quantum Electronics, vol. QE-16, no. 10, pp. 1067-1072, 1980.

[13] W. Bludau and R. Rossberg, “Low-Loss Laser-to-Fiber Coupling with Negligible optical Feedback, ” Journal of Lightwave Technology, vol.LT-3, pp. 294-302, 1985.

[14] C. A. Edwards, H. M. Presby and C. Dragone, “ Ideal Microlenses for Laser to Fiber Coupling, ” IEEE Journal of Lightwave Technology vol. 11, no. 2, pp. 252-257, 1993.

[15] 11 H. M. Yang, S. Y. Huang, C. W. Lee, T. S. Lay, and W. H. Cheng, “High-Coupling Tapered Hyperbolic Fiber Microlens and Taper Asymmetry Effect, ” Journal of Lightwave Technology, vol.22, pp. 1395-1401, 2004.

[16] V. S. Shah, L. Curtis, R. S. Vodhanel, D. P. Bour, and W. C. Young, “Efficient Power Coupling from a 980-nm, Broas-Area Laser to a Single-Mode Fiber Using a Wedge-Shaped Fiber Endface, ” IEEE Journal of Lightwave Technology, vol. 8, pp. 1313-1318, 1990.

[17] H. Yoda and K. Shiraishi, “A New Scheme of a Lensed Fiber Employing a Wedge-Shaped Graded-Index Fiber Tip for the Coupling Between High-Power Laser Diodes and Single-Mode Fiber, ” Journal of Lightwave Technology, vol.19, pp. 1910-1917, 2001.
[18] H. M. Presby and C. R. Giles, “Asymmetric Fiber Microlenses for Efficient Coupling to Elliptical Laser Beams, ” IEEE Photonics Technology Letters, vol.5, pp. 184-186, 1993.

[19] R. A. Modavis, T. W. Webb, “Anamorphic Microlens for Laser Diode to Single-Mode Fiber Coupling, ” IEEE Photonics Technology Letters, vol. 7 pp. 798-800, 1995.

[20]呂昱寬著, 「新型四角錐形光纖透鏡」, 碩士論文, 國立中山大學通訊工程研究所, 民國九十二年。

[21] S. M. Yeh, Y. K. Lu, S. Y. Huang, H. H. Lin, C. H. Hsieh and W. H. Cheng, “A Novel Scheme of Lensed Fiber Employing a Quadrangular-Pyramid-Shaped Fiber Endface for Coupling Between High-Power Laser Diodes and Single-Mode Fibers, ” IEEE Journal of Lightwave Technology, vol. 22, no. 5, pp. 1374-1378, 2004.

[22] S. M. Yeh, S.Y. Huang and W. H, Cheng, “A New Scheme of Conical-wedge-shaped Fiber Endface for Coupling Between High-power Laser Diodes and Single-mode Fibers, ” IEEE Journal of Lightwave Technology, vol. 23, issue 4, pp. 1781-1786, 2005.

[23]M. Usami, Y. Matsushima, and Y. Takahashi, “0.98-μmInGaAs-InGaP Strained Quantum-Well Lasers with GaAs-InGaP Superlattice Optical Confinement Layers, ” Journal of Selected Topics in Quantum Electronics, vol.1, pp. 244-249, 1995.

[24]F. W. Preston, “The Theory and Design of Plate Glass Polishing Machines, ” IEEE Journal of the Society of Glass Technology, vol. 11, no. 5, pp. 214 -256, 1972.


[25]劉育達著, 「非對稱光纖端面加工機構設計之研究」, 碩士論文,國立中山大學機電與機械工程研究所, 民國九十五年。

[26]陳明鴻著, 「無鍍抗反射膜光纖光柵雷射光譜特性之研究」, 碩士論文, 國立中山大學光電工程研究所, 民國九十年。

[27] J. H. Lau, Thermal Stress and Strain in Microelectronics Packaging.
New York: Van Nostrand Reinhold, 1993.

[28]R. E. Krieger, Computations for Electronic equipment. Malabar

[29]J. P. Holman, Heat Transfer. McGraw-Hill ,Inc. 1997.

[30]A. C. Yunus, Heat Transfer a Practical Approach. McGraw-Hill ,Inc. 1998.

[31]吳復強, 產品穩健設計:田口方法之原理與應用:品質改善的利
器, 台北縣:全威出版社, 民國九十五年。

[32]葉斯銘著, 「橢圓光纖微透鏡之研究」, 博士論文, 國立中山大學光電工程研究所, 民國九十五年。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.147.56.45
論文開放下載的時間是 校外不公開

Your IP address is 3.147.56.45
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code