Responsive image
博碩士論文 etd-0813109-151950 詳細資訊
Title page for etd-0813109-151950
論文名稱
Title
極細晶鎂合金之變形特性
Deformation characteristics of ultrafine-grained AZ31 Mg alloy
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
88
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-07-30
繳交日期
Date of Submission
2009-08-13
關鍵字
Keywords
鎂合金、晶界滑移、滑移帶、雙晶、微小滑移帶
grain boundary sliding, shear band, AZ31, ECAE, EBSD, twin
統計
Statistics
本論文已被瀏覽 5667 次,被下載 0
The thesis/dissertation has been browsed 5667 times, has been downloaded 0 times.
中文摘要
經由等徑轉角擠型(Equal Channel Angular Extrusion, ECAE)晶粒細化至0.46
μm AZ31 鎂合金具有強烈織構(Texture)組織,在李文讀的拉伸實驗結果發現在
較慢應變速率下延展性較佳,但在本實驗之平行Basal 結晶面壓縮實驗中並無此
現象,且應變速率敏感係數幾乎為零。從工程應力-應變壓縮曲線圖發現其為雙
晶變形之行為。在壓縮變形初期,應變為拉伸雙晶所貢獻。
室溫所進行之平行Basal 結晶面壓縮實驗首次觀察到由雙晶變形所造成之應
變集中帶(Shear Band, SB)的產生,且其和壓縮軸成45 度夾角,Shear Band 也隨
著應變的增加其寬度隨之變寬。
在與Basal 結晶面夾角為45 度之壓縮實驗當中,雖然為啟動Basal 滑移之變
形機制但其延展性卻是相當地差,在45 度壓縮實驗當中也有發現有Shear Band
之產生但和平行Basal 結晶面壓縮之結果截然不同,45 度壓縮之Shear Band 極
為細幾乎沒有寬度,且在低應變量時就會造成裂縫之生成。
平行Basal 結晶面之拉伸實驗結果顯示,當應變速率越慢其延展性越佳,為
應變速率之函數。在此實驗當中並沒有觀察到任何Shear Band 之生成,但隨著
應變速率的下降發現到詴片表面之粗糙程度就越大。詴片表面之刮痕經拉伸變形
後並沒有觀察到有任何偏折之現象,所以在較慢之應變速率下提升延展性並非由
晶界滑移所造成。
Abstract
none
目次 Table of Contents
目錄
目錄.......................................................................................................................... Ⅰ
表目錄...................................................................................................................... Ⅲ
圖目錄...................................................................................................................... Ⅳ
摘要.......................................................................................................................... Ⅹ
一、前言.................................................................................................................. 1
二、文獻回顧.......................................................................................................... 2
2-1 ECAE 之原理 .............................................................................................. 2
2-2 影響ECAE 變形之參數 ............................................................................ 2
2-3 極細晶材料之變形行為 ............................................................................ 3
2-3-1 極細晶材料之延展性 ..................................................................... 3
2-3-2 極細晶材料之晶界滑移行為 ......................................................... 4
2-3-3 極細晶材料之應變速率敏感值 ..................................................... 5
2-4 極細晶材料之滑移帶(Shear Band) ........................................................... 6
2-5 室溫鎂合金之變形行為 ............................................................................ 7
2-5-1 雙晶和滑移 ........................................................................................ 7
2-5-2 織構(Texture)的影響 ......................................................................... 8
三、研究目的.......................................................................................................... 10
四、實驗方法.......................................................................................................... 11
4-1 材料與ECAE 製成 .................................................................................... 11
4-2 壓縮詴片製備 ............................................................................................ 11
4-3 拉伸詴片製備 ............................................................................................ 12
4-4 掃描式電子顯微鏡詴片製作 .................................................................... 13
4-5 背向式電子繞射詴片製作 ........................................................................ 13
五、實驗結果.......................................................................................................... 14
5-1 壓縮實驗 .................................................................................................... 14
II
5-1-1 極細晶0.46μm AZ31 鎂合金之壓縮實驗 ................................... 14
5-1-2 極細晶0.46μm AZ31 鎂合金之應變集中帶發展 ....................... 14
5-1-3 1.83μm AZ31 鎂合金之壓縮實驗 ................................................ 14
5-1-4 1.83μm AZ31 鎂合金之EBSD 分析 ........................................... 15
5-1-5 AZ31 鎂合金之45 度壓縮實驗..................................................... 16
5-2 拉伸實驗 .................................................................................................. 17
5-2-1 AZ31 鎂合金之拉伸實驗............................................................... 17
六、討論.................................................................................................................. 18
6-1 應變集中帶 ................................................................................................. 18
6-2 織構對極細晶AZ31 變形行為之影響 ...................................................... 18
6-3 晶界滑移 ..................................................................................................... 20
七、結論.................................................................................................................. 22
八、參考文獻.......................................................................................................... 23
表.............................................................................................................................. 26
圖.............................................................................................................................. 29
參考文獻 References
[1] C.Y. Yu, P.W. Kao, C.P. Chang, Acta Mater. 53, 4019, (2005)
[2] J.E. Carsley, W.W. Milligan, X.H. Zhu, E. C. Aifantis, Scripta Mater., 36, 727,
(1997)
[3] D. Jia, K.T. Ramesh, E. Ma, Acta Mater. 51, 3495, (2003)
[4] V. M. Segal, Patent of the USSR, No. 575892, (1977).
[5] V. M. Segal, K. T. Hartwig and R. E. Goforth, Mater. Sci. Eng., A224, 107,
(1997).
[6] V. M. Segal, Mater. Sci. Eng., A386, 269, (2004)..
[7] Y. Iwahashi, Z. Horita, M. Nemoto and T. G. Langdon, Acta Mater,
46, 3317, (1998).
[8] Y.M. Wang, M. Chen, F. Zhou, E. Ma, Nature.419, 912, (2002).
[9] Y.M. Wang, E. Ma, Acta Mater.52, 1699, (2004).
[10] Y.H. Zhao, X.Z. Liao, S. Cheng, E. Ma, Y.T. Zhu. Adv Mater, 18, 2280, (2006).
[11] E. Ma, J Metal, 58, 4, 49, (2006).
[12] E. Ma E. Scripta Mater, 49, 663, (2003).
[13] D. Jia, Y.M. Wang, K.T. Ramesh, E.Ma, Y.T.Zhu, R.Z. Valiev. Appl Phys Lett,
79, 611, (2001).
[14] R. Islamgaliev, N. Yunusova, I. Sabirov, A. Sergueeva, R. Valiev, Mater Sci Eng
A, 877, 319–321, (2001).
[15] R.Z. Valiev. Adv Eng Mater, 5, 296, (2003).
[16] I. Sabirov, Y. Estrin, M.R. Barnett, I. Timokhina, P.D. Hodgson, Acta Mater., 56,
2223,(2008).
[17] I. Sabirov, Y. Estrin, M.R. Barnett, I. Timokhina, P.D. Hodgson, Scripta
Mater, 58, 163, (2008).
[18] P. Kumar, C. Xu, T.G. Langdon. Mater Sci Eng A, 447, 410–411, (2005).
24
[19] M.G. Zelin, A,K, Mukherjee. Acta Metall Mater, 45, 2359, (1995).
[20] M.G. Zelin, M. Dunlap, A. Rosen, A.K. Mukherjee. J Appl Phys, 74, 4972,
(1993).
[21] A.V. Sergueeva, N.A. Mara, A.K. Mukherjee. Mater Sci Eng A, 463, 8, (2007).
[22] F.E. Hauser, C.D. Starr, L. Tietz, and J.E. Dorn: Trans. ASM, 47, 102, (1955).
[23] F.E. Hauser, P.R. Landon, and J.E. Dorn: Trans. ASM, 48, 986, (1956).
[24] R.C. Gifkins and T.G. Langdon: J. Inst. Met, 93, 347, (1964-1965).
[25] S. Hwang, C. Nishimura, and P.G. McCormick: Scripta Mater, 44, 1507, (2001).
[26] Y. Huang, T.G. Langdon. Mater Sci Eng A, 358, 114, (2003).
[27] N.Q. Chinh, P. Szommer, Z. Horita, T.G. Langdon. Adv Mater, 18, 34, (2006).
[28] A. Vinogradov, S. Hashimoto, V. Patlan, K. Kitagawa. Mater Sci Eng A, 862,
319-321, (2001).
[29] H. Florian, Dalla Torre, C. Anja, Hänzi and Peter J, Uggowitzer Scripta Mater, 59,
207, (2008).
[30] J.W. Christian, S. Mahajant, Prog. Mater. Sci. 39, 1, (1995).
[31] J. Balik, P. Lukac, Acta Metall Mater, 41, 1447, (1993)
[32] A.H. Chokshi, A.K. Mukherjee, T.G. Langdon, Mater. Sci. Eng. R 10, 237,
(1993).
[33] K. Kubota, M. Mabuchi, K. Higashi, J. Mater. Sci. 34, 2255, (1999).
[34] M. Furui, H. Kitamura, H. Anada, T.G. Langdon, Acta Mater. 55, 1083, (2007).
[35] D. Jia, K. T. Ramesh, and E. Ma, Scr. Mater. 42, 73, (2000).
[36] D. Jia, Y. M. Wang, K. T. Ramesh, E. Ma, Y. T. Zhu, and R. Z. Valiev, Appl.
Phys. Lett. 79, 611, (2001).
[37] Q. Wei, D. Jia, K. T. Ramesh, and E. Ma, Appl. Phys. Lett. 81, 7, 1240, (2002).
[38] C. S. Barrett, Structure of Metals ~McGraw-Hill, New York, 442, (1952).
[39] J.E. Carsley, A. Fisher, W.W. Milligan, and E.C. Aifantis, metallurgical and
25
materials transactions A, 29A, 2261, (September 1998).
[40] N. Stanford, Philosophical Magazine Letters, 88, 5, 379-386, (2008)
[41] J. Koike, metallurgical and materials transactions A, 36A, 1689, (JULY 2005).
[42] E.W. Kelley and W.F. Hosford, Jr., transactions of the metallurgical society of
mine, 242, 5, (January 1968).
[43] R.E. Reed-Hill and W.D. Robertson: Trans. TMS-AIME, 209, 496-502, (1957).
[44] P.W. Flynn, J. Mote, and J.E. dorn: Trans. TMS-AIM, 221, 1148-54, (1961).
[45] H. Yoshinaga and R. Horiuchi: Trans. Japan Inst. Metal, 5, 14-21, (1963).
[46] B.C. Wonsiewicz and W.A.Backofen,transactions of the metallurgical society of
aime, 239, 1422, (septemeber 1967)
[47] 李文讀未發表之結果, 國立中山大學.
[48] Nicola Ecob, Brain Ralph, Journal of materials science, 18, 2419-2429, (1983)
[49] K. Nakashima, Z. Horita, M. Nemoto and T. G. Langdon, Acta Mater, 46, 1589,
(1998).
[50] M. Furukawa, Z. Horita and T. G. Langdon, Mater. Sci. Eng., A332, 97, (2002).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 13.58.151.231
論文開放下載的時間是 校外不公開

Your IP address is 13.58.151.231
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code