Responsive image
博碩士論文 etd-0813110-140433 詳細資訊
Title page for etd-0813110-140433
論文名稱
Title
Cu(In,Al)Se2薄膜製備與分析
Preparation and characterization of Cu(In,Al)Se2 thin film
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
75
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-07-26
繳交日期
Date of Submission
2010-08-13
關鍵字
Keywords
薄膜、蒸鍍、太陽電池
thin film, evaporation, solar cell, Sb, Cu(InAl)Se2
統計
Statistics
本論文已被瀏覽 5636 次,被下載 34
The thesis/dissertation has been browsed 5636 times, has been downloaded 34 times.
中文摘要
本論文利用四源共蒸鍍法(Four source co-evaporation)在鈉玻璃基板上製備Cu(In,Al)Se2(以下簡稱CIAS)多晶薄膜。基板溫度在560℃,組成比例為Cu:In:Al:Se=28:15:9:48,由X-ray繞射及拉曼光譜確定薄膜為單一相,基板溫度低於560℃時,會有反應不完全的二次相。在固定蒸氣通量,調變基板溫度的實驗中,Cu/(In+Al)比值在基板溫度越高時會越大;Al/(In+Al)比值不會隨著基板溫度有顯著的變化。薄膜從穿透光譜得到能隙值為1.53eV,在室溫下由霍爾量測得到薄膜導電形式為P-type,電阻率為0.28Ωcm,遷移率為24.63cm2/V-s,載子濃度為1.27×1019cm-3。此外,嘗試以基板溫度440℃成長CIAS薄膜,摻入Sb可以改變薄膜的成長模式,表面平整緻密,但是晶粒並無顯著成長,不論摻雜與否都有二次相及成分不均勻的狀況,推論是基板溫度太低造成反應不完全。
Abstract
Polycrystalline Cu(In,Al)Se2 films were deposited by four-source evaporation of Cu, In, Al, and Se using Knudsen type sources in which the elemental fluxes were coincident onto soda lime glass substrates. The single-phase films with composition of Cu:In:Al:Se = 28:15:9:48 which were confirmed by X-ray diffraction and micro-Raman spectroscopy were deposited at substrate temperature of 560℃. Secondary phases were observed when temperature of substrate is below 560℃ due to incompletely reaction. Under fixed effusion flux, the value of Cu/(In+Al) becomes larger as temperature of substrate increase. However, the value of Al/(In+Al) keeps nearly constant as temperature increase. The band gap is 1.53 eV derived from the result of spectrophotometer. The room temperature resistivity, Hall mobility and carrier concentration of the films are 0.28 Ωcm, 24.63 cm2V-1s-1 and 1.27x1019 cm-3 respectively. And the conductive type is p-type. By the way, we try to grow Cu(In,Al)Se2 film in the presence of an Sb beam at substrate temperature of 440℃. After the addition of an Sb beam, surface morphology become smooth and compact, but there is no significant grain growth. No matter an Sb beam adds or not, secondary phases were observed in both case due to the low temperature of substrate.
目次 Table of Contents
摘要 - 1 -
目錄 - 3 -
表目錄 - 6 -
圖目錄 - 7 -
第一章 緒論 - 10 -
1.1 前言 - 10 -
1.2 文獻回顧 - 11 -
1.2.1 Cu(In,Ga)Se2系列的發展 - 11 -
1.2.2 CIGS薄膜真空製程 - 12 -
1.2.3 CIGS系列的有序缺陷化合物 - 14 -
1.2.4 CIGS系列摻入Sb - 16 -
1.2.5 CIAS的研究 - 19 -
1.2.6 拉曼(Raman)光譜檢測CIGS系列材料 - 23 -
1.3 研究動機與目的 - 25 -
第二章 實驗設備、步驟與分析儀器 - 28 -
2.1製程設備 - 28 -
2.1.1蒸鍍源瓶的製作 - 28 -
2.1.2 分子束蒸鍍系統 - 29 -
2.1.3實驗步驟 - 30 -
2.2 分析儀器 - 32 -
2.2.1熱探針(Hot Probe) - 32 -
2.2.2四點探針(4 point probe) - 32 -
2.2.3 X-ray繞射儀(XRD) - 32 -
2.2.4 穿透光譜儀(Spectrophotometer) - 33 -
2.2.5 掃描式電子顯微鏡(SEM) - 33 -
2.2.6 霍爾量測(Hall Measurement) - 34 -
2.2.7 顯微拉曼光譜儀(Micro-Raman Spectroscopy) - 34 -
第三章 實驗結果與討論 - 35 -
3.1 CIAS多晶薄膜成長與分析 - 35 -
3.1.1實驗設計概念 - 35 -
3.1.2固定蒸氣通量,調變基板溫度 - 35 -
3.1.3 CIAS薄膜的電、光性分析 - 37 -
3.2 CIAS:Sb多晶薄膜成長與分析 - 39 -
3.2.1實驗設計概念 - 39 -
3.2.2固定蒸氣通量及基板溫度,觀察摻雜前後的變化 - 40 -
3.2.3 CIAS:Sb薄膜的電性分析 - 41 -
第四章 結論 - 42 -
第五章 參考文獻 - 43 -
參考文獻 References
【1】S. M. Firoz Hasan, et al. (1999). Analysis of the optical absorption characteristics of CuInSe2 thin films. Solar Energy Materials and Solar Cells, 58(4), 349-360.
【2】R. D. Wieting (1999). CIS product introduction: Progress and challenges. AIP conference proceedings, 462(1) 3-8.
【3】A. Jasenek, et al. (2001). Radiation resistance of Cu(In,Ga)Se2 solar cells under 1-MeV electron irradiation. Thin Solid Films, 387(1-2), 228-230.
【4】R. M. Burgess, et al. (1988). Electron and proton radiation effects on GaAs and CuInSe2 thin film solar cells. 20th IEEE Photovoltaic Specialists Conference, 2, 909-912.
【5】P. D. Paulson, et al. (2002). CuIn1 – xAlxSe2 thin films and solar cells. J.Appl.Phys., 91(12), 10153-10156.
【6】I. Repins, et al. (2008). 19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor. Progress in Photovoltaics: Research and Applications 16(3), 235-239.
【7】U. Rau, et al. (2001). Electrical characterization of Cu(In,Ga)Se2 thin-film solar cells and the role of defects for the device performance. Solar Energy Materials and Solar Cells, 67(1-4), 137-143.
【8】M. W. Haimbodi, et al. (2000). Cu(InAl)Se2 thin films and devices deposited by multisource evaporation. 28th IEEE Photovoltaic Specialists Conference, 454-457.
【9】S. Marsillac, et al. (2002). High-efficiency solar cells based on Cu(InAl)Se2 thin films. Appl.Phys.Lett., 81(7), 1350-1352.
【10】M. W. Haimbodi, et al. (2000). Cu(InAl)Se2 thin films and devices deposited by multisource evaporation. Photovoltaic Specialists Conference, 2000. Conference Record of the Twenty-Eighth IEEE, 454-457.
【11】H. Hahn, et al. (1953). Untersuchungen über ternäre Chalkogenide. V. Über einige ternäre Chalkogenide mit Chalkopyritstruktur. Z. Anorg. u. Allg. Chemie, 271(3-4), 153-170.
【12】J. L. Shay, et al. (1975). Ternary chalcopyrite semiconductors: growth, electronic properties, and applications, Pergamon Press, Oxford.
【13】S. Wagner, et al. (1974). CuInSe2/CdS heterojunction photovoltaic detectors. Appl.Phys.Lett., 25(8), 434-435.
【14】J. D. Meakin (1985). Status of CuInSe2 solar cells. Proceedings of SPIE Conf. : Photovoltaics., 543, 108-118.
【15】L. L. Kazmerski, et al. (1976). Thin-film CuInSe2/CdS heterojunction solar cells. Appl.Phys.Lett., 29(4), 268-270.
【16】 R. A. Mickelsen, et al. (1980). High photocurrent polycrystalline thin film CdS/CuInSe2 solar cell. Appl. Phys. Lett..36(5), 371-373.
【17】R. D. Wieting, (2002). CIS manufacturing at the megawatt scale. 29th IEEE Photovoltaic Specialists Conference, 478-483.
【18】M. Powalla, et al. (2002). Pilot line production of CIGS modules: First experiences in processing and further developments. 29th IEEE Photovoltaic Specialists Conference, 571-574.
【19】http://www.globalsolar.com/index.php
【20】K. Kushiya (2001). Improvement of electrical yield in the fabrication of CIGS-based thin-film modules. Thin Solid Films, 387(1-2), 257-261.
【21】 T. Negami, et al. (2001). Large-area CIGS absorbers prepared by physical vapor deposition. Solar Energy Materials and Solar Cells, 67(1-4), 1-9.
【22】A. Luque & S. Hegedus. (2003) Handbook of photovoltaic science and engineering. John Wiley & Sons Ltd.
【23】D. Rudmann. (2004). Effects of sodium on growth and properties of Cu(In,Ga)Se2 thin films and solar cells. University of Basel, Doctor thesis.
【24】R. J. Gupta, et al. (1988). Growth, synthesis and characterization of large grain CuInSe2 in bulk and thin film form. Journal of Crystal Growth, 87(1), 151-153.
【25】S. Kohiki, et al. (1991). Nitrogen implantation for molecular beam deposited CuInSe2 thin films. Appl.Phys.Lett., 59(14), 1749-1751.
【26】S. Kohiki, et al. (1993). CuInSe2 homojunction diode fabricated by phosphorus doping. Appl.Phys.Lett., 62(14), 1656-1657.
【27】B. H. Tseng, et al. (1995). Influences of Sb on the Growth and Properties of CuInSe2 Thin Films. Jpn. J. Appl. Phys. 34, 1109-1112.
【28】Y. Akaki, et al. (2003). Structural and optical characterization of Sb-doped CuInS2 thin films grown by vacuum evaporation method. Journal of Physics and Chemistry of Solids, 64(9-10), 1863-1867.
【29】E. U. Masumdar, et al. (2003). Some studies on chemically synthesized antimony-doped CdSe thin films. Materials Chemistry and Physics, 77(3), 669-676.
【30】Y. Min, et al. (2010). Optimization of CIGS-Based PV Device through Antimony Doping. Chem. Mater. 22, 285–287.
【31】F. Itoh, et al. (1998). Growth and characterization of Cu(InAl)Se2 by vacuum evaporation. Solar Energy Materials and Solar Cells, 50(1-4), 119-125.
【32】B. J. Stanbery (2002). Copper indium selenides and related materials for photovoltaic devices. Critical Reviews in Solid State & Materials Science, 27(2), 73.
【33】W. Gebicki, et al. (1990). Growth and characterisation of CuAlxIn1-xSe2 mixed crystals. Journal of Physics D: Applied Physics, 23(7), 964.
【34】W. N. Shafarman, et al. (2002). Material and device characterization of thin film Cu(InAl)Se2 solar cells. Photovoltaic Specialists Conference, 2002. Conference Record of the Twenty-Ninth IEEE, 519-522.
【35】K. Ramanathan (2003) Properties of 19.2% efficiency ZnO/CdS/CuInSe2 thin film solar cells. Prog. Photovolt. Res. Appl., 11(4), 225-230.
【36】J. H. Ely, et al. (2000). Raman characterization of epitaxial Cu–In–Se thin films. Thin Solid Films, 371(1-2), 36-39.
【37】C. Rincon, et al. (1992). Lattice vibrations of CuInSe2 and CuGaSe2 by raman microspectrometry. J.Appl.Phys., 72(9), 321-4324.
【38】N. Shigetaka, et al. (1997). Raman Spectra of Ordered Vacancy Compounds in the Cu-In-Se System Jpn. J. Appl. Phys. 36, L1075.
【39】O. Ramdani, et al. (2007). One-step electrodeposited CuInSe2 thin films studied by raman spectroscopy. Thin Solid Films, 515(15), 5909-5912.
【40】 G. Morell, et al. (1996). Crystalline phases at the p- to n-type transition in Cu-ternary semiconducting films. Appl.Phys.Lett., 69(7), 987-989.
【41】H. Tanino, et al. (1992). Raman spectra of CuInSe2. Phys. Rev. B, 45, 13323-13330.
【42】鄭佳仁(2005),CuAlSe2薄膜製備與分析,國立中山大學材料科學研究所碩士論文。
【43】張宗文(1994),Sb摻入對CuInSe2薄膜成長與特性的影響,國立中山大學材料科學研究所碩士論文。
【44】潘家叡(2009),CuInSe2薄膜快速硒化製程之研究,國立中山大學材料與光電科學學系研究所碩士論文。
【45】J. Weszka, et al. (2000). Raman scattering in In2Se3 and InSe2 amorphous films. Journal of Non-Crystalline Solids, 265(1-2), 98-104.
【46】C. Rincon, et al. (1998). Raman spectra of the ordered vacancy compounds CuIn3Se5 and CuGa3Se5. Applied Physics Letters, 73(4), 441-443.
【47】C. A. Durante Rincón, et al. (1998). Inst. Phys. Conf. Ser. No 152: Section A, 123.
【48】Y. Bharath, et al. (2006). Growth and characterization of CuIn1-xAlxSe2 thin films deposited by co-evaporation. Journal of Physics D: Applied Physics, 39(24), 5124.
【49】S. B. Zhang, et al. (1997). Stabilization of ternary compounds via ordered arrays of defect pairs. Phys. Rev. Lett., 78, 4059-4062.
【50】D. Y. Lee, et al. (2002). Characterization of Cu-poor surface on Cu-rich CuInSe2 film prepared by evaporating binary selenide compounds and its effect on solar efficiency. Thin Solid Films, 410(1-2), 171-176.
【51】S. H. Kwon, et al. (1998). Effect of CuIn3Se5 layer thickness on CuInSe2 thin films and devices. Solar Energy, 64(1-3), 55-60.
【52】D. Schmid, et al. (1993). Chalcopyrite/defect chalcopyrite heterojunctions on the basis of CuInSe2. J.Appl.Phys., 73(6), 2902-2909.
【53】Y. Bharath Kumar Reddy, et al. (2006). Preparation and characterization of CuIn0.3Al0.7Se2 thin films for tandem solar cells. Solar Energy Materials and Solar Cells, 90(11), 1656-1665.
【54】S. Marsillac, et al. (2002). Evolution of the properties of CuAlSe2 thin films with the oxygen content. Solar Energy Materials and Solar Cells, 71(4), 425-434.
【55】J. Olejnicek, et al. (2009). Formation of CuIn1-xAlxSe2 thin films studied by raman scattering. Meet.Abstr.- Electrochem.Soc., 902(9), 762.
【56】H. J. Möller (1993). Semiconductors for solar cells, Artech House, p 15.
【57】B. V. Korzoun, et al. (1995). T(x) phase diagram of the Cu2Se-Al2Se3 system. Journal of Electronic Materials. 24, 903-906 .
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內公開,校外永不公開 restricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 54.89.24.147
論文開放下載的時間是 校外不公開

Your IP address is 54.89.24.147
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code