Responsive image
博碩士論文 etd-0813110-173243 詳細資訊
Title page for etd-0813110-173243
論文名稱
Title
電化學製備聚苯胺奈米薄膜應用於有機太陽能電池之研究
The Study of Electrochemical Deposited PANI Thin Nano-film for Organic Solar Cells
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
118
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-07-13
繳交日期
Date of Submission
2010-08-13
關鍵字
Keywords
循環伏安法、電化學、聚苯胺、有機太陽能電池、電洞傳輸層、苯胺單體濃度
aniline monomer concentration, polyaniline, electrochemical, cyclic voltammetry, organic solar cells, hole transport layer
統計
Statistics
本論文已被瀏覽 5666 次,被下載 0
The thesis/dissertation has been browsed 5666 times, has been downloaded 0 times.
中文摘要
本研究是以電化學(循環伏安法)聚合方式合成聚苯胺薄膜於ITO陽極基板上,將其應用在高分子有機太陽能電池當作電洞傳輸層,其元件結構ITO(150nm)/PANI(50nm)/P3HT:PCBM(100nm)/Al(200nm),探討調配不同的苯胺單體濃度所聚合而成的聚苯胺薄膜其表面形態、導電度、透光度等等,進而對元件效率的影響並與傳統電洞傳輸層PEDOT : PSS做比較。
在本研究中吾人對聚苯胺薄膜做了一系列材料特性分析,發現不同單體濃度所聚合而成的聚苯胺薄膜,其吸收光譜在450 nm~650 nm波段中(主動層的主要吸收波段),穿透度至少都達80%以上,且導電度高達0.6 S/cm,擁有如此良好的光電特性,故可知聚苯胺薄膜具有作為電洞傳輸層的基本能力。而PANI薄膜的表面形態,經由本研究可知,可藉由調配不同的單體濃度使PANI薄膜的表面型態有所改變。
在元件效率表現探討上,發現元件效率主要會受到PANI表面形態的改變而有所影響,相較於其他濃度參數,在苯胺單體濃度0.3M參數下聚合PANI薄膜,擁有最適當的表面形態,其元件在本研究中有最高的功率轉換效率,可達1.76%。
Abstract
This research is to synthesize PANI (polyaniline) thin film for polymer organic solar cells as a hole transport layer on the top of ITO substrate by using electrochemical (cyclic voltammetry) method. The device structure is ITO (150 nm) / PANI (50 nm) / P3HT: PCBM (100 nm) / Al (200 nm). We investigated surface morphology, conductivity, and light transmission of the PANI thin film from different aniline monomer concentration and studied the factors on device efficiency, also compared with the device structured with hole transport layer PEDOT:PSS.
In this study, we found PANI thin films synthesized with different aniline monomer concentration, their light transmission over 80% at the range of 450 nm ~ 650nm wavelength and the conductivity up to 0.6 S/cm. It shows that PANI thin film suitably act as hole transport layer. In addition, we found morphology of PANI thin film that varied with different aniline monomer concentration.
The power conversion efficiency of the device mainly affected by morphology with different aniline monomer concentration. Comparing to other parameters of concentration, the 0.3M aniline monomer concentration polymerized PANI thin film owned the most appropriate surface morphology, and the power conversion efficiency up to 1.76%.
目次 Table of Contents
致謝............................................................................I
中文摘要..................................................................III
Abstart.....................................................................IV
目錄..........................................................................V
圖目錄....................................................................VII
表目錄.....................................................................X
第一章 緒論............................................................1
1-1 新能源的開發..................................................1
1-2 太陽能電池的分類與介紹..............................2
1-3 有機太陽能電池結構演進..............................5
1-4 有機太陽能電池材料簡介..............................9
1-5 導電高分子發展過程....................................12
1-6 導電高分子-聚苯胺......................................15
1-7 研究動機.......................................................23
第二章 理論基礎.................................................25
2-1 能量及電荷轉移機制...................................25
2-2 光電轉換原理...............................................27
2-3 太陽能電池等效電路...................................33
2-4 光電特性參數...............................................35
2-5 太陽光模擬...................................................40
第三章 實驗.........................................................45
3-1 實驗架構.......................................................45
3-2 實驗藥品.......................................................47
3-3 製程設備.......................................................49
3-4 量測分析儀器...............................................52
3-5 藥品配製.......................................................65
3-6 實驗步驟.......................................................67
第四章 結果與討論.............................................72
4-1 材料分析結果與討論...................................72
4-2 元件製程結果與討論...................................88
第五章 總結.........................................................99
參考文獻............................................................101
參考文獻 References
[1] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, Nat. Mater. 4, 864 (2005).
[2] W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, Adv. Funct. Mater. 15, 1617 (2005).
[3] S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Lederc, K. Lee, and A. J. Heeger, Nat. photo. 3, 297 (2009).
[4] H. Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, and G. Li, nat. photo. 3, 649 (2009).
[5] H. Kallmann, and M. Pope, J. Chem. Phys. 30, 585 (1958).
[6] 陳盛煒, “光伏薄膜混摻Alq3的研究” , 中山大學碩士論文, (2005).
[7] A. Elschner, F. Bruder, H. W. Heuer, F. Jonas, A. Karbach, S. Kirchmeyer, S. Thurm, and R. Wehrmann, Synth. Met. 111-112, 139 (2000).
[8] X. Gong, D. Moses, A. J. Heeger, S. Liu, and A. K. Y. Jen, Appl. Phys. Lett. 83, 1 (2003).
[9] Y. Cao, G. Yu, C. Zhang, R. Menon, and A. J. Heeger, Synth. Met. 87, 171 (1997).
[10] S. Alem, R. de Bettignies, J.-M. Nunzi, and M. Cariou, Appl. Phys. Lett. 84, 2178 (2004).
[11] M. Y. Song, K. J. Kim, and D. Y. Kim, Sol. Energy Mater. Sol. Cells 85, 31 (2005).
[12] J. Huang, P. F. Miller, J. C. de Mello, A. J. de Mello, and D. D. C. Bradley, Synth. Met. 139, 569 (2003).
[13] J. C. Scott, J. H. Kaufman, P. J. Brock, R. DiPietro, J. Salem and J. A. Goitia, J. Appl. Phys. 79, 2745 (1996).
[14] M. Al-Ibrahim, H. K. Roth, M. Schroedner, A. Konkin, U. Zhokhavets, G. Gobsch, P. Scharff, and S. Sensfuss, Organic Electronics 6, 65 (2005).
[15] F. Padinger, R. S. Rittberger, and N. S. Sariciftci, Adv. Funct. Mater. 13, 85 (2003).
[16] E. A. Rohlfing, D. M. Cox, and A. Kaldor, J. Chem. Phys. 81, 3222 (1984).
[17] H. Spanggard, and F. C. Krebs, Sol. Energy Mater. Sol. Cells 83, 125 (2004).
[18] G. Natta, G. Mazzanti, and P. Corradini, Atti. Accad. Naz. Lince
Rend. Cl. Sci. Fis. Mat. Natur. 25, 3 (1958).
[19] H. Shirakawa, and S. Ikeda, Polym. J. 2, 231 (1971).
[20] H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, and A. J. Heeger, J. Chem. Soc. Chem. Commun, 578 (1977).
[21] B. Wessling, Synth. Met. 4, 119 (1991).
[22] H. Letherby, J. chem. Soc. 15, 161 (1862).
[23] A. G. Green, and A. E. Woodhead, J. chem. Soc. 97, 2388 (1910).
[24] A. G. Green, and A. E. Woodhead, J. chem. Soc. 101, 1117 (1912).
[25] M. Jozefowicz, Thesis, University of Paris, (1963).
[26] M. Jozefowicz, L. T. Yu, J. Perichon, and R. Buvet, J. poly. Sci. C. 22, 1187 (1969).
[27] R. D. Surville, M. Jozefowicz, L. T. Yu, J. Pepichon, and R. Buvet,
Electrochimica Acta 13, 1451 (1968).
[28] A. G. MacDiarmid, J. C. Chiang, M. Halpern, W. S. Huang, S. L. Mu, and N. L. D. Somasir, Mol. Cryst. Liq. Cryst. 121, 173 (1985).
[29] A. G. MacDiarmid, J. C. Chiang, A. F. Richter, and A. J. Epstein, Synth. Met. 18, 285 (1987).
[30] A. Ray, G. E. Asturias, D. L. Kershner, A. F. Richter, A. G. MacDiarmid, and A. J. Epstein, Synth. Met. 29, 141 (1989).
[31] D. M. Mohilner, R. N. Adams, and W. J. Argersinger, J. Am. Chem. Soc. 84, 3618 (1962).
[32] J. Bacon, and R. N. Adams, J. Am. Chem. Soc. 90, 6596 (1968).
[33] E. M. Genies, and C. Jsintavis, Electroanal. Chem. 195, 109 (1985).
[34] A. G. MacDiarmid, J. H. Chiang, W. Huang, B. D. Humphery, and N. L. D. Somasiri, Mol. Cryst. Liq. Cryst. 125, 309 (1985).
[35] W. W. Focke, G. E. Wnek and Y. Wei, J. Phys. Chem. 91, 5813 (1987).
[36] M. A. Green, Solar Cells : Operating Principles, Technology, and System Application, (1982).
[37] 莊嘉琛, 太陽能工程-太陽電池篇, 全華(1997).
[38] B. Burnett, The Basic Physics and Design of Ⅲ-Ⅴ Multi-junction Solar Cells, (2002).
[39] M. P. Thekackra, The Solar Cell Constant and Solar Spectrum Measurement from a Research Aircraft, (1970).
[40] 蔡宜展, “OLED新穎紅光摻雜材料特性之研究” , 中山大學碩士論文, (2005).
[41] 陳金鑫、黃孝文, 有機電激發光材料與元件, 五南(2005).
[42] 陳一帆, “RF濺鍍式ITO薄膜沉積之後熱處理效應” , 中山大學碩士論文, (2005).
[43] M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, and C. J. Brabec, Adv. Mater. 18, 789 (2006).
[44] 李俊賢, “聚苯胺薄膜應用於有機高分子太陽能元件之研究” , 中山大學碩士論文, (2009).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 52.14.127.57
論文開放下載的時間是 校外不公開

Your IP address is 52.14.127.57
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code