Responsive image
博碩士論文 etd-0813112-134451 詳細資訊
Title page for etd-0813112-134451
論文名稱
Title
高能量飼料及餵食策略對海鱺成長與體組成之影響
Effects of high energy diets and their feeding strategy on growth and body composition of the cobia (Rachycentron canadum)
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
92
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-23
繳交日期
Date of Submission
2012-08-13
關鍵字
Keywords
三酸甘油酯、澱粉、餵食策略、高能量飼料、脂肪
high energy diets, feeding strategies, body composition, lipid redistribution, triacylglycerol
統計
Statistics
本論文已被瀏覽 5642 次,被下載 2386
The thesis/dissertation has been browsed 5642 times, has been downloaded 2386 times.
中文摘要
本研究探討以兩種高能量飼料,高醣 (HC,澱粉32.5%)和高脂 (HL,16%油脂)和不同時序餵食方式對海鱺(cobia, Rachycentron canadum)成長、飼料轉換率與體組成及脂肪分佈之影響。實驗分三部份,預備實驗及兩次餵食實驗(實驗I與實驗II)。預備實驗觀察海鱺對高醣、高脂肪飼料適應的情形,並確認轉換飼料是否造成顯著的成長變化和油脂累積,預備實驗中觀察到成長記錄,以HC→HL和HL→HC餵食兩週轉兩週下,成長上有較顯著變化,油脂含量則以兩週轉換及三週轉換變化較明顯。以此所設計實驗I及II,分為對照組、HC、HL、HC→HL、HL→HC 5組處理方式。餵食平均初重約700 g,餵食海鱺32天HL與HC飼料且亦為等能量,其中HC→HL為餵食HC飼料16天後在續以投餵HL飼料,而HL→HC為餵食HL飼料16天後再續以投餵HC飼料。結果顯示: (1) HC和HL能量相等的飼料餵食海鱺, HC短期較有顯著高每日成長率和增重率,但32天後HC、HL、HC→HL、HL→HC各組間在成長上無顯著不同 (2)油脂累積上,餵食HL較HC及控制組飼料有較高油脂累積的效果,但兩種飼料轉換時,僅HC→HL在背肉上和HL→HC有顯著差異。餵食HC,油脂累積似乎較堆積在內臟中。本實驗結果和小鼠、大鼠的研究雷同,體組成含量僅與後面時段餵食的飼料較有關聯(3) 血清三酸甘油酯和游離脂肪酸濃度的比例,在轉換下有改變的趨勢,而HC餵食海鱺係以游離脂肪酸轉變成三酸甘油酯形式,故在血清中三酸甘油酯和游離脂肪酸的相對量較高,而HC組則以游離脂肪酸形式於血清中。由此可得結論: (1) 高能量飼料確實能提供高成長效益 (2) 餵食HC飼料和HL飼料32天皆有相同的成長效果,且皆能造成油脂累積,但兩種油脂累積形式不同。HC係由澱粉在肝中新形成油脂,並較易形成三酸甘油脂,經由血液循環的方式傳送到各組織堆積,而 HL易以飼料中之游離脂肪酸的形式傳送到各組織中堆積 (3) 改變HC和HL之餵食順序在成長,和其他餵食HC、HL餵食32天後並無顯著差異,而油脂累積效應,僅在背肉有顯著不同 (4) 改變餵食方式之實驗基礎確實可以運用在養殖上。
Abstract
The effects of feeding with two high energy diets ( high carbohydrate and high lipid) and the feeding regime of the two diets on growth, feeding conversion rate, and body composition of the cobia were studied. Based on the observation of lipid redistribution under dietary regime change in rats, this study was aimed to understand how regime change affects the tissue lipid content in the cobia. The study had three parts: preliminary experiment, experiment I, and experiment II. The preliminary experiment was designed to find the proper time to switch the high energy diets and to see the adaptation of cobia to the highe energy dietary treatments. The experiment I was conducted to monitor the growth and body composition of cobia fed for thirty-two days with different experimental diets, including control diets, high carbohydrate diets (HC), high lipid diets (HL), and different feeding regimes (HC→HL: feeding the HC diet for the first sixteen days and the HL diet for the subsequent sixteen days; HL→HC: feeding the HL diet for the first sixteen days and the HC diet for the subsequent sixteen days. The experiment II was studied serum concentration of glucose, triacylglycerol, and free fatty acids and tissues triacylglycerol concentration in liver and white muscle. The fish fed with the HC diet had higher body weight and lower feeding conversion rate than the HL group in first sixteen days; however, the growth of the two groups was not significantly different during the thirty-two day period. The lipid content of dorsal muscle was significantly higher in HC→HL than that in HL→HC; wherease, the lipid content of ventral muscle and viscera was not signficantly affected. The concentrations of serum triacylglycerol, free fatty acid, and relative mean ratio of triacylglycerol in muscle to triacylglycerol in liver were significantly affected. The results of relative mean ratio of serum TG to serum FFA and relative mean ratio of muscle TG to liver TG, suggest that high carbohydrate diet drives de nova lipid production in liver, which circulates to the peripheral tissues for storage as triacylglycerol. High lipid diet preferentially offers energy for lipolysis to produce energy. These results are consistant with the results in rats. Our results show that high energy diets provided a higher growth rate than the control diet, but there were no growth difference in cobia fed high carbohydrate diets, or high lipid diets, or between different feeding regimes. The cobia fed the high carbohydrate diet and the high lipid diet might use different ways for lipid accumulation. These fed the high carbohydrate diet had formed more triacylglycerol than that these fed high lipid diets. The feeding regime shift between the high carbohydrate diet and the high lipid diet significantly affect the the lipid content of the dorsal muscle in the cobia.
目次 Table of Contents
謝辭 I
中文摘要 II
英文摘要 III
表目錄 VII
圖目錄 VIII
文獻回顧 1
壹、前言 8
貳、材料與方法 11
一、實驗動物 11
二、預備實驗 11
三、實驗I 13
四、實驗II 13
五、實驗飼料及配製方法 13
六、樣品前處理 18
1.預備實驗 18
2.實驗I 18
3.實驗II 18
七、實驗動物晶片植入和標示 18
八、成長參數記錄 19
1.增重百分率(Percent weight gain, PWG) 19
2.飼料轉換率(Feed conversion ratio, FCR) 19
3.每日成長率 (Specific growth rate, SGR) 19
4.肝體比 (Hepatosomatic index, HSI) 19
九、實驗樣品取樣和血液採集 19
十、粗成份分析 20
1.粗脂質分析 20
2.粗蛋白質測定 20
3.水份測定: 21
4.灰份測定: 22
十一、血清成份分析 22
1.血醣測定 22
2.三酸甘油酯測定 23
3.游離脂肪酸測定 24
4.組織中三酸甘油酯 (TG)分析 25
5.總脂質分析 26
6.統計分析 26
參、結果 27
一、預備實驗 27
1.成長情形 27
2.油脂分佈情形 27
二、實驗I 31
1.生長情形 31
2.各組織部位之粗成份分佈情形 31
三、實驗II 40
1.成長狀況 40
2.血液分析 40
3.組織中的三酸甘油酯 41
肆、討論 52
一、海鱺對高能量飼料的適應情形 52
二、海鱺對高醣、高油脂與轉換飼料之油脂累積和體組成的影響 53
三、醣和脂肪比例對成長和體組成影響及醣和脂肪比例對脂肪酸品系的影響 54
四、高能量飼料對魚類攝食量與血清葡萄糖的影響 55
五、醣類在魚類身上扮演的角色 57
六、轉換飼料對魚類生理、魚類營養上的影響及三酸甘油酯在魚類營養扮演角色 60
七、轉換飼料和脂肪重新分佈、能量上的需求與養殖上的應用 66
八、餵食策略與實際養殖上的應用性和建議 67
伍、結論 69
陸、參考文獻 70
柒、附錄 78
一、預備實驗: 78
二、正式實驗 (實驗I與實驗II): 78
參考文獻 References
Ali, A., and N. A. Al-Asgah. 2001. Effect of feeding different carbohydrate to lipid ratios on the growth performance and body composition of Nile Tilapia (Oreochromis niloticus) fingerlings. Animal Research 50:91-100.
Ali, M. Z., and K. Jauncey. 2004. Optimal dietary carbohydrate to lipid ratio in African catfish Clarias gariepinus (Burchell 1822). Aquaculture International 12:169-180.
Amin, A., M. A. Islam, M. A. Kader, M. Bulbul, M. A. R. Hossain, and M. E. Azimz. 2012. Production performance of sutchi catfish Pangasianodon hypophthalmus S. in restricted feeding regime: effects on gut, liver and meat quality. Aquaculture Research 43:621-627.
Ando, S., Y. Mori, K. Nakamura, and A. Sugawara. 1993. Characteristics of lipid-accumulation types in 5 species of fish. Nippon Suisan Gakkaishi 59:1559-1564.
Anttila, K., M. Jantti, and S. Manttari. 2010. Effects of training on lipid metabolism in swimming muscles of sea trout (Salmo trutta). Journal of Comparative Physiology B-Biochemical Systemic and Environmental Physiology 180:707-714.
Bergan, H. E., J. D. Kittilson, and M. A. Sheridan. 2012. Nutrition-regulated lipolysis in rainbow trout (Oncorhynchus mykiss) is associated with alterations in the ERK, PI3K-Akt, JAK-STAT, and PKC signaling pathways. General and Comparative Endocrinology 176:367-376.
Berrill, I. K., M. J. R. Porter, and N. R. Bromage. 2004. The influence of dietary lipid inclusion and daily ration on growth and smoltification in 1+ Atlantic salmon (Salmo salar) parr. Aquaculture 242:513-528.
Booth, M. A., B. J. Tucker, G. L. Allan, and D. S. Fielder. 2008. Effect of feeding regime and fish size on weight gain, feed intake and gastric evacuation in juvenile Australian snapper Pagrus auratus. Aquaculture 282:104-110.
Borba, M. R., D. M. Fracalossi, and L. E. Pezzato. 2006. Dietary energy requirement of piracanjuba. fingerlings, Brycon orbignyanus, and relative utilization of dietary carbohydrate and lipid. Aquaculture Nutrition 12:183-191.
Borlongan, I. G. 1992. Dietary requirement of milkfish (Chanos Chanos Forsskal) juveniles for total aromatic-amino-acids. Aquaculture 102:309-317.
Browning, J. D., J. A. Baker, T. E. Rogers, J. Davis, S. Satapati, and S. C. Burgess. 2010. Short-term carbohydrate-restriction is more effective than calorie restriction for reducing liver triacylglycerides in NAFLD. Hepatology 52:622A-623A.
Chatzifotis, S., M. Panagiotidou, N. Papaioannou, M. Pavlidis, I. Nengas, and C. C. Mylonas. 2010. Effect of dietary lipid levels on growth, feed utilization, body composition and serum metabolites of meagre (Argyrosomus regius) juveniles. Aquaculture 307:65-70.
Cherel, Y., K. A. Hobson, and S. Hassani. 2005. Isotopic discrimination between food and blood and feathers of captive penguins: Implications for dietary studies in the wild. Physiological and Biochemical Zoology 78:106-115.
Cho, S. H., and T. Y. Heo. 2011. Effect of dietary nutrient composition on compensatory growth of juvenile olive flounder Paralichthys olivaceus using different feeding regimes. Aquaculture Nutrition 17:90-97.
Craig, S. R., M. H. Schwarz, and E. McLean. 2006. Juvenile cobia (Rachycentron canadum) can utilize a wide range of protein and lipid levels without impacts on production characteristics. Aquaculture 261:384-391.
Cui, X. J., Q. C. Zhou, H. O. Liang, J. Yang, and L. M. Zhao. 2010. Effects of dietary carbohydrate sources on the growth performance and hepatic carbohydrate metabolic enzyme activities of juvenile cobia (Rachycentron canadum Linnaeus.). Aquaculture Research 42:99-107.
Dias, J., G. Corraze, J. Arzel, M. J. Alvarez, J. M. Bautista, C. Lopez-Bote, and S. J. Kaushik. 1999. Nutritional control of lipid deposition in rainbow trout and European seabass: Effect of dietary protein energy ratio. Cybium 23:127-137.
Dias, J., R. Rueda-Jasso, S. Panserat, L. E. C. da Conceicao, E. F. Gomes, and M. T. Dinis. 2004. Effect of dietary carbohydrate-to-lipid ratios on growth, lipid deposition and metabolic hepatic enzymes in juvenile Senegalese sole (Solea senegalensis, Kaup). Aquaculture Research 35:1122-1130.
Ding, Z., Y. Xu, H. Zhang, S. Wang, W. Chen, and Z. Sun. 2009. No significant effect of additive ratios of docosahexaenoic acid to eicosapentaenoic acid on the survival and growth of cobia (Rachycentron canadum) juvenile. Aquaculture Nutrition 15:254-261.
Enes, P., S. Panserat, S. Kaushik, and A. Oliva-Teles. 2009. Nutritional regulation of hepatic glucose metabolism in fish. Fish Physiology and Biochemistry 35:519-539.
Enes, P., S. Panserat, S. Kaushik, and A. Oliva-Teles. 2011. Dietary carbohydrate utilization by European sea bass (Dicentrarchus labrax L.) and gilthead sea bream (Sparus aurata L.) juveniles. Reviews in Fisheries Science 19:201-215.
Erfanullah, and A. K. Jafri. 1998. Effect of dietary carbohydrate-to-lipid ratio on growth and body composition of walking catfish (Clarias batrachus). Aquaculture 161:159-168.
Felip, O., A. Ibarz, J. Fernandez-Borras, M. Beltran, M. Martin-Perez, J. V. Planas, and J. Blasco. 2012. Tracing metabolic routes of dietary carbohydrate and protein in rainbow trout (Oncorhynchus mykiss) using stable isotopes ( C-13 starch and N-15 protein): effects of gelatinisation of starches and sustained swimming. British Journal of Nutrition 107:834-844.
Figueiredo-Silva, A. C., G. Corraze, J. Sanchez-Gurmaches, J. Gutierrez, and L. M. P. Valente. 2010. Growth and nutrient utilisation of blackspot seabream (Pagellus bogaraveo) under different feeding regimes. Fish Physiology and Biochemistry 36:1113-1124.
Fraser, T. W. K., and S. J. Davies. 2009. Nutritional requirements of cobia, Rachycentron canadum (Linnaeus): a review. Aquaculture Research 40:1219-1234.
Gao, W., Y. J. Liu, L. X. Tian, K. S. Mai, G. Y. Liang, H. J. Yang, M. Y. Huai, and W. J. Luo. 2010. Effect of dietary carbohydrate-to-lipid ratios on growth performance, body composition, nutrient utilization and hepatic enzymes activities of herbivorous grass carp (Ctenopharyngodon idella). Aquaculture Nutrition 16:327-333.
Guler, G. O., A. Aktumsek, and A. Karabacak. 2011. Effect of feeding regime on fatty acid composition of longissimus dorsi muscle and subcutaneous adipose tissue of akkaraman lambs. Kafkas Universitesi Veteriner Fakultesi Dergisi 17:885-892.
Halver, J. E. 2001. Research in fish nutrition. Aquaculture Research 32:611-614.
Hamid, N. K. A., M. Mahayat, and R. Hashim. 2011. Utilization of different carbohydrate sources and starch forms by bagrid catfish (Mystus nemurus) (Cuv & Val). Aquaculture Nutrition 17:E10-E18.
Hanfelt, J. J. 1997. Statistical approaches to experimental design and data analysis of in vivo studies. Breast Cancer Research and Treatment 46:279-302.
Harmon, J. S., and M. A. Sheridan. 1992. Glucose-stimulated lipolysis in rainbow-trout, Oncorhynchus mykiss, liver. Fish Physiology and Biochemistry 10:189-199.
Heitjan, D. F., A. Manni, and R. J. Santen. 1993. Statistical-analysis of in-vivo tumor-growth experiments. Cancer Research 53:6042-6050.
Hillestad, M., F. Johnsen, and T. Asgard. 2001. Protein to carbohydrate ratio in high-energy diets for Atlantic salmon (Salmo salar L.). Aquaculture Research 32:517-529.
Hoar, W. S., D. J. Randall, and E. M. Donaldson. 1979. Fish Physiology. VIII.
Hu, Y. H., Y. J. Liu, L. X. Tian, H. J. Yang, G. Y. Liang, and W. Gao. 2007. Optimal dietary carbohydrate to lipid ratio for juvenile yellowfin seabream (Sparus latus). Aquaculture Nutrition 13:291-297.
Jantrarotai, W., P. Sitasit, and S. Rajchapakdee. 1994. The optimum carbohydrate to lipid ratio in hybrid clarias catfish (Clarias macrocephalus × C.gariepinus) diets containing raw broken rice. Aquaculture 127:61-68.
Johnsen, C. A., O. Hagen, M. Adler, E. Jonsson, P. Kling, R. Bickerdike, C. Solberg, B. T. Bjornsson, and E. A. Bendiksen. 2011. Effects of feed, feeding regime and growth rate on flesh quality, connective plasma hormones in farmed Atlantic salmon (Salmo salar L.). Aquaculture 318:343-354.
Kannadhason, S., K. Muthukumarappan, and K. A. Rosentrater. 2011. Effect of starch sources and protein content on extruded aquaculture feed containing DDGS. Food and Bioprocess Technology 4:282-294.
Kiens, B. 2006. Skeletal muscle lipid metabolism in exercise and insulin resistance. Physiological Reviews 86:205-243.
Kim, J. Y., D. H. Kim, J. Choi, J. K. Park, K. S. Jeong, C. Leeuwenburgh, B. P. Yu, and H. Y. Chung. 2009. Changes in lipid distribution during aging and its modulation by calorie restriction. AGE 31:127-142.
Kjaer, M. A., A. Vegusdal, G. M. Berge, T. F. Galloway, M. Hillestad, A. Krogdahl, H. Holm, and B. Ruyter. 2009. Characterisation of lipid transport in Atlantic cod (Gadus morhua) when fasted and fed high or low fat diets. Aquaculture 288:325-336.
Koko, G. K. D., P. K. Sarker, E. Proulx, and G. W. Vandenberg. 2010. Effects of alternating feeding regimes with varying dietary phosphorus levels on growth, mineralization, phosphorus retention and loading of large rainbow trout (Oncorhynchus mykiss). Aquatic Living Resources 23:277-284.
Kumar, V., N. P. Sahu, A. K. Pal, S. Kumar, P. Sharma, J. K. Chettri, and A. K. Sinha. 2009. Non-gelatinized starch influences the deposition of n-3 fatty acids in the muscle of a tropical freshwater fish, Labeo rohita. Journal of Animal Physiology and Animal Nutrition 93:659-668.
Lee, I. S., G. Shin, and R. Choue. 2010. Shifts in diet from high fat to high carbohydrate improved levels of adipokines and pro-inflammatory cytokines in mice fed a high-fat diet. Endocrine Journal 57:39-50.
Lee, S. M., and K. D. Kim. 2009. Effects of dietary carbohydrate to lipid ratios on growth and body composition of juvenile and grower rockfish, Sebastes schlegeli. Aquaculture Research 40:1830-1837.
Lee, S. M., and J. H. Lee. 2004. Effect of dietary glucose, dextrin and starch on growth and body composition of juvenile starry flounder Platichthys stellatus. Fisheries Science 70:53-58.
Leggatt, R. A., P. A. Raven, T. P. Mommsen, D. Sakhrani, D. Higgs, and R. H. Devlin. 2009. Growth hormone transgenesis influences carbohydrate, lipid and protein metabolism capacity for energy production in coho salmon (Oncorhynchus kisutch). Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology 154:121-133.
Liu, B., J. Xie, X. P. Ge, L. H. Miao, and G. Y. Wang. 2012. Effect of high dietary carbohydrate on growth, serum physiological response, and hepatic heat shock cognate protein 70 expression of the top-mouth culter Erythroculter ilishaeformis Bleeker. Fisheries Science 78:613-623.
Matsushita, T., S. Inoue, and R. Tanaka. 2010. An Assay Method for Determining the Total Lipid Content of Fish Meat Using a 2-Thiobarbituric Acid Reaction. Journal of the American Oil Chemists Society 87:963-972.
McCarron, E., G. Burnell, and G. Mouzakitis. 2009. Growth assessment on three size classes of the purple sea urchin Paracentrotus lividus using continuous and intermittent feeding regimes. Aquaculture 288:83-91.
Moon, T. W. 2001. Glucose intolerance in teleost fish: face or fiction? Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology 129:243-249.
Moro, G. V., R. Camilo, G. Moraes, and D. M. Fracalossi. 2010. Dietary non-protein energy sources: growth, digestive enzyme activities and nutrient utilization by the catfish jundia, Rhamdia quelen. Aquaculture Research 41:394-400.
Noori, F., G. Van Stappen, and P. Sorgeloos. 2012. Preliminary study on the activity of protease enzymes in Persian sturgeon (Acipenser persicus Borodin, 1897) larvae in response to different diets: effects on growth and survival. Aquaculture Research 43:198-207.
Ochiai, M., and T. Matsuo. 2009. Effects of short-term dietary change from high-carbohydrate diet to high-fat diet on storage, utilization, and fatty acid composition of rat muscle triglyceride during swimming exercise. Journal of Clinical Biochemistry and Nutrition 44:168-177.
Polakof, S., F. Medale, L. Larroquet, C. Vachot, G. Corraze, and S. Panserat. 2011a. Insulin Stimulates Lipogenesis and Attenuates Beta-Oxidation in White Adipose Tissue of Fed Rainbow Trout. Lipids 46:189-199.
Polakof, S., F. Medale, L. Larroquet, C. Vachot, G. Corraze, and S. Panserat. 2011b. Regulation of de novo hepatic lipogenesis by insulin infusion in rainbow trout fed a high-carbohydrate diet. Journal of Animal Science 89:3079-3088.
Polakof, S., T. P. Mommsen, and J. L. Soengas. 2011c. Glucosensing and glucose homeostasis: From fish to mammals. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 160:123-149.
Polakof, S., S. Panserat, J. Soengas, and T. Moon. 2012. Glucose metabolism in fish: a review. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology:1-31.
Ren, M. C., Q. H. Ai, K. S. Mai, H. M. Ma, and X. J. Wang. 2011. Effect of dietary carbohydrate level on growth performance, body composition, apparent digestibility coefficient and digestive enzyme activities of juvenile cobia, Rachycentron canadum L. Aquaculture Research 42:1467-1475.
Sa, R., P. Pousao-Ferreira, and A. Oliva-Teles. 2008. Effect of dietary starch source (normal versus waxy) and protein levels on the performance of white sea bream Diplodus sargus (Linnaeus) juveniles. Aquaculture Research 39:1069-1076.
Saitoh, S., T. Matsuo, K. Tagami, H. Chang, K. Tokuyama, and M. Suzuki. 1996. Effects of short term dietary change from high fat to high carbohydrate diets on the storage and utilization of glycogen and triacylglycerol in untrained rats. European Journal of Applied Physiology and Occupational Physiology 74:13-22.
Sheridan, M. A. 1988. Lipid dynamics in fish - aspects of absorption, transportation, deposition and mobilization. Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology 90:679-690.
Shimeno, S., H. Hosokawa, and M. Takeda. 1996. Metabolic response of juvenile yellowtail to dietary carbohydrate to lipid ratios. Fisheries Science 62:945-949.
Shinohara, A., J. Takakura, A. Yamane, and M. Suzuki. 2010. Effect of the classic 1-week glycogen-loading regimen on fat-loading in rats and humans. Journal of Nutritional Science and Vitaminology 56:299-304.
Soengas, J. L., and M. Aldegunde. 2002. Energy metabolism of fish brain. Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology 131:271-296.
Takahashi, L. S., J. D. Biller, E. Criscuolo-Urbinati, and E. C. Urbinati. 2011. Feeding strategy with alternate fasting and refeeding: effects on farmed pacu production. Journal of Animal Physiology and Animal Nutrition 95:259-266.
Tan, Q., S. Xie, X. Zhu, W. Lei, and Y. Yang. 2007. Effect of dietary carbohydrate-to-lipid ratios on growth and feed utilization in Chinese longsnout catfish (Leiocassis longirostris Gunther). Journal of Applied Ichthyology 23:605-610.
Tan, Q. S., F. Wang, S. Q. Xie, X. M. Zhu, W. Lei, and J. Z. Shen. 2009. Effect of high dietary starch levels on the growth performance, blood chemistry and body composition of gibel carp (Carassius auratus var. gibelio). Aquaculture Research 40:1011-1018.
Thiex, N. 2009. Evaluation of analytical methods for the determination of moisture, crude protein, crude fat, and crude fiber in distillers dried grains with solubles. Journal of Aoac International 92:61-73.
Trushenski, J. T., B. Gause, and H. A. Lewis. 2011. Selective fatty acid metabolism, not the sequence of dietary fish oil intake, prevails in fillet fatty acid profile change in sunshine bass. North American Journal of Aquaculture 73:204-211.
Turchini, G. M., D. S. Francis, and S. S. De Silva. 2006. Modification of tissue fatty acid composition in Murray cod (Maccullochella peelii peelii, Mitchell) resulting from a shift from vegetable oil diets to a fish oil diet. Aquaculture Research 37:570-585.
Wang, J. T., Y. J. Liu, L. X. Tian, K. S. Mai, Z. Y. Du, Y. Wang, and H. J. Yang. 2005. Effect of dietary lipid level on growth performance, lipid deposition, hepatic lipogenesis in juvenile cobia (Rachycentron canadum). Aquaculture 249:439-447.
Wathne, E., B. Bjerkeng, T. Storebakken, V. Vassvik, and A. B. Odland. 1998. Pigmentation of Atlantic salmon (Salmo salar) fed astaxanthin in all meals or in alternating meals. Aquaculture 159:217-231.
Webb, K. A. J., L. T. Rawlinson, and G. J. Holt. 2010. Effects of dietary starches and the protein to energy ratio on growth and feed efficiency of juvenile cobia, Rachycentron canadum. Aquaculture Nutrition 16:447-456.
Williams, E. A., S. N. Perkins, N. C. P. Smith, S. D. Hursting, and M. A. Lane. 2007. Carbohydrate versus energy restriction: Effects on weight loss, body composition and metabolism. Annals of Nutrition and Metabolism 51:232-243.
Wu, X. Y., Y. J. Liu, L. X. Tian, K. S. Mai, R. Guo, and S. J. Jin. 2007. Effect of different dietary raw to pre-gelatinized starch ratios on growth performance, feed utilization and body composition of juvenile yellowfin seabream (Sparus latus). Aquaculture International 15:467-477.
Xu, S. D., L. Zhang, Q. Y. Wu, X. B. Liu, S. Q. Wang, C. H. You, and Y. Y. Li. 2011. Evaluation of dried seaweed Gracilaria lemaneiformis as an ingredient in diets for teleost fish Siganus canaliculatus. Aquaculture International 19:1007-1018.
Xu, Y. Q., Z. K. Ding, H. Z. Zhang, L. Liu, S. Q. Wang, and J. Gorge. 2009. Different ratios of docosahexaenoic and eicosapentaenoic acids do not alter growth, nucleic acid and fatty acids of juvenile cobia (Rachycentron canadum). Lipids 44:1091-1104.
Zheng, X. Z., Z. K. Ding, Y. Q. Xu, O. Monroig, S. Morais, and D. R. Tocher. 2009. Physiological roles of fatty acyl desaturases and elongases in marine fish: Characterisation of cDNAs of fatty acyl Delta 6 desaturase and elovl5 elongase of cobia (Rachycentron canadum). Aquaculture 290:122-131.
Zivkovic, A. M., J. B. German, and A. J. Sanyal. 2007. Comparative review of diets for the metabolic syndrome: implications for nonalcoholic fatty liver disease. American Journal of Clinical Nutrition 86:285-300.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code