Responsive image
博碩士論文 etd-0813112-140717 詳細資訊
Title page for etd-0813112-140717
論文名稱
Title
有機光電元件載子傳輸與銥金屬錯合物磷光發光元件之研究
Investigation of carrier transport in organic optoelectronic devices and iridium complex based phosphorescent light emitting devices
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
73
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-26
繳交日期
Date of Submission
2012-08-13
關鍵字
Keywords
空間電荷限制電流、載子移動率、緩衝層、銥金屬錯合物、溶液製程、有機發光二極體
buffer layer, carrier mobility, space charge limited current, organic light emitting device, iridium complex, solution process
統計
Statistics
本論文已被瀏覽 5668 次,被下載 1257
The thesis/dissertation has been browsed 5668 times, has been downloaded 1257 times.
中文摘要
在本研究中,內容主要分為兩個部分:第一部分利用空間電荷限制電流(space charge limited current, SCLC)法研究有機光電元件中載子傳輸行為。首先製作Spiro-MeOTAD電洞元件(ITO/Spiro-MeOTAD/Al)並量測元件之電流-電壓特性曲線。由量測結果得知,電洞注入數量還不足以使元件達到空間電荷限制電流條件,在高電壓區電洞元件之電流密度-電壓(J-V)特性曲線與SCLC公式無法擬合。因此在ITO電極與有機層間加入一MoO3緩衝層增加電洞的注入。由實驗結果顯示,加入MoO3緩衝層元件之電流密度增加約5倍,顯示MoO3元件中電洞濃度增加,因此成功的使電洞元件在高電壓區J-V曲線與SCLC公式擬合並計算得到Spiro-MeOTAD的電洞移動率約為1.44×10-4cm2/Vs。接著,使用Li salt作為n型摻雜物摻雜於Spiro-MeOTAD中,我們發現Li salt會形成Spiro-MeOTAD電洞的陷阱(traps)導致電洞被捕捉,減小元件的電流密度,因此無法達到SCLC條件。
第二部分我們以溶液製程方式製作新型銥(iridium)金屬錯合物(Ir complexes) 藍綠光元件。首先利用調變摻雜濃度得到銥金屬錯合物最佳摻雜濃度,接著藉由改變元件中電子注入層、電洞注入層及發光層厚度設計出較合適的元件結構。最後成功的製作出藍綠光元件:元件最大亮度37.7cd/m2和最大電流效率1.68cd/A。
Abstract
In this research, the contents are divided into two sections. In the first section, we investigated carrier transport behavior of organic optoelectronic devices by using space charge limited current(SCLC) method. Firstly, we fabricated a hole-only device (ITO/Spiro-MeOTAD/Al) for Sprio-MeOTAD and the current density– voltage(J-V) characteristics of the device was measured. The J-V characteristics of the device do not match with SCLCs very well at high voltage since the number of hole injection was not enough to achieve SCLCs condition. To enhance the injection of hole carrier into the organic layer, a MoO3 buffer layer was inserted between ITO electrode and organic layer. The current density in device with MoO3 buffer layer achieved 5 times enhancement, indicating that the concentration of hole in MoO3 device is increment. Hence, we succeeded in making the J-V characteristics of the hole-only device to match with SCLCs well at high voltage, and the hole mobility of Sprio-MeOTAD estimated by SCLCs was 1.44×10-4cm2/Vs. Li salt was also doped into Sprio-MeOTAD as an n-type dopant. We found that Li salt could form hole-traps in Sprio-MeOTAD, which reduced hole carriers in Spiro-MeOTAD. The current density of the device was decreased, and the device could not achieve SCLCs condition at high voltage.
In the second section, we use two novel iridium(Ir) complexes to fabricate blue-green emitting devices by solution process. First, we obtained optimum concentration of phosphorescent emitters by controlling of the dopants concentration. Then, we adjusted the thickness of the electron injection layer, hole injection layer, and emission layer to design more suitable device structure. Finally, we succeeded in fabricating blue-green light emitting devices. The maxima luminescence was 37.7cd/m2 and maxima current efficiency was 1.68 cd/A in the Ir complex based devices.
目次 Table of Contents
中文論文審定書 i
英文論文審定書 ii
致謝 iii
中文摘要 iv
Abstract v
目錄 vii
圖目錄 ix
表目錄 xii
第一章 序論 1
1-1前言 1
1-2有機半導體簡介 1
1-3有機電激發光元件的發展 4
1-4研究動機與目的 4
第二章 基礎理論 6
2-1有機電激發光元件之發光機制 6
2-1-1有機電激發光元件原理 6
2-1-2有機電激發光元件結構 9
2-2電荷注入理論 10
2-2-1 Richardson-Schottky熱激發載子注入理論 10
2-2-2 Fowler-Nordheim穿隧理論 11
2-3電荷傳遞機制 13
2-4載子傳導理論 15
2-4-1空間電荷限制電流 15
2-4-2低電場時理論模型Child’s Law 16
2-4-3高電場時考慮Poole-Frenkel效應載子hopping傳導的理論 17
2-5能量轉移機制 18
第三章 元件製作及實驗裝置 20
3-1元件製作流程 20
3-2-1 ITO電極黃光微影製程 20
3-2-2 ITO基板清洗 22
3-2-3單載子元件之製作 23
3-2-3-1實驗材料 23
3-2-3-2熱蒸鍍有機材料及陰極 24
3-2-4發光元件之製作 25
3-2-4-1實驗材料 25
3-2-4-2發光元件製程 27
3-3元件之光電特性量測 29
3-3-1單載子元件電流-電壓(Current-Voltage)量測 29
3-3-2有機發光元件光電特性量測系統 31
第四章 結果與討論 32
4-1有機光電元件載子傳輸之研究 32
4-1-1單載子元件之載子傳輸的研究 32
4-1-2加入MoO3緩衝層對元件載子傳輸的影響 34
4-1-3 n型摻雜物對元件之載子傳輸的影響 37
4-2銥金屬錯合物磷光發光元件之研究 40
4-2-1 ND61磷光發光元件 40
4-2-1-1 ND61摻雜濃度之探討 40
4-2-1-2 Cs2CO3厚度調變之探討 43
4-2-1-3電洞注入層與發光層成膜調變之探討 45
4-2-2 ND75-2磷光發光元件之研究 50
第五章 結論 54
參考文獻 55
參考文獻 References
[1]D. H. Kim, J. H. Ahn, W. M. Choi, H. S. Kim, T.H. Kim, J. Song, Y. Y. Huang, Z. Liu, C. Lu, J. A. Rogers, Science 320, 507 (2008)
[2]K. Nomura, H. Hosono, M. Hirano, T. Kamiya, K. Ueda, H. Ohta, Science 300, 1269 (2003)
[3]I. Schnitzer, E.Yablonovitch, C. Caneau, T. J. Gmitter, A. Scherer, Appl. Phys. Lett. 63, 2174 (1993)
[4]J. Britt, C. Ferekides, Appl. Phys. Lett. 52, 2851 (1993)
[5]G. He, M. Pfeiffer, K. Leo, M. Hofmann, J. Birnstock, R. Pudzich, J. Salbeck, Appl. Phys. Lett. 85, 3911(2004)
[6]C. D. Dimitrakopoulos, P. R. L. Malenfant, Adv. Mater. 14, 99 (2002)
[7]S. Guenes, H. Neugebauer, N. S. Sariciftci, Chem. Rev. 38, 1324 (2007)
[8]陳俊宏, 生活科技教育月刊, 37卷第3期, 2004年
[9]S. Tokito, M. Suzuki, F. Sato, M. Kamachi, K. Shirane, Org. Electron. 4, 105 (2003)
[10]R. Zhu, J.M. Lin, W. Z. Wang, C. Zheng, W. Wei, W. Huang, Y. H. Xu, J. B. Peng, Y. Cao, J. Phys. Chem. B 112,1611 (2008)
[11]S. R. Tseng, H. F. Meng, K.C. Lee, S. F. Horng, Appl. Phys. Lett. 93, 1 (2008)
[12]M. Rebarz, P. Dalasinski, W. Bala, Z. Lukasiak, M. Wojdyla, L. Kreja, Optica Applicata 35, 407 (2005)
[13]T. R. Hebner, C. C. Wu, D. Marcy, M. H. Lu, J. C. Sturm, Appl. Phys. Lett. 72, 519 (1998)
[14]徐玉娟, 科學月刊, 374期, p126, 2月號, 2001年
[15]X. W. Chen, W. C. H. Choy, C. J. Liang, P. K. A. Wai, S. He, Appl. Phys. Lett. 91, 221112 (2007)
[16]Y. Cao, D. Jena, Appl. Phys. Lett. 90, 182112 (2007)
[17]I. H. Campbell, D. L. Smith, C. J. Neef, J. P. Ferraris, Appl. Phys. Lett. 74, 2809 (1999)
[18]T. Mori, E. Sugimura, T. Mizutani, J. Phys. D: Appl. Phys. 26, 452 (1993)
[19]T. Yasuda, Y. Yamaguchi, D. C. Zou, T. Tsutsui, Jpn. J. Appl. Phys. 41, 5626 (2002)
[20]T. Y. Chu, O.K. Song, Appl. Phys. Lett. 90, 203512 (2007)
[21]C. Goldmann, S. Haas, C. Krellner, K. P. Pernstich, D. J. Gundlach, B. Batlogg, J. Appl. Phys. 96, 2080 (2004)
[22]黃孝文、陳金鑫,有機電激發光材料與元件 (2005)
[23]M. A. Khan, W. Xu, Khizar-ul-Haq, Y. Bai, X. Y. Jiang, Z. L. Zhang, W. Q. Zhu, J. Appl. Phys. 103, 014509 (2008)
[24]W. Xua, Khizar-ul-Haqa, Y. Baia, X.Y. Jianga, Z.L. Zhang, Solid State Commun. 146, 311 (2008)
[25]M. Pope, H. Kallmann, P. Magnante, J. Chem. Phys. 38, 2042 (1963)
[26]C. W. Tang, S. A. VanSlyke, Appl. Phys. Lett. 51, 913 (1987)
[27]R. H. Partridge, polymer 24, 733 (1982)
[28]J. H. Burroughes, D. Bradley, A. Brown, R. Marks, K. Mackay, R. Friend, P. Burn, A. Holmes, Nature 347, 539 (1990)
[29]C. Ulbricht, B. Beyer, C. Friebe, A. Winter, U.S. Schubert, Adv. Mater. 21, 4418 (2009)
[30]L. He, L. Duan, J. Qiao, R. Wang, P. Wei, L. D. Wang, Y. Qiu, Adv. Funct. Mater. 18, 2123 (2008)
[31]L. He, L. Duan, J. Qiao, D. Zhang, G. Dong, L. Wang, Y. Qiu, Org. Electron. 11, 1185 (2010)
[32]C. Adachi, M. A. Baldo, S. R. Forrest, Appl. Phys. Lett. 77, 904 (2000)
[33]C. Adachi, T. Tsutsui, S. Saito, Appl. Phys. Lett. 57, 531 (1990)
[34]J. T. Lim, N. H. Lee, Y. J. Ahn, G. W. Kang, C. H. Lee, C. Appl.Phys. 2, 295 (2002)
[35]C. Adachi, S. Tokito, T. Tsutsui, S. Saito, Jpn. J. Appl. Phys. 27, 713 (1988)
[36]E. L. Murphy, R. H. Good, Phys. Rev. 102, 1464 (1956)
[37]R. H. Flower, L. Nordheim, Proc. R. Soc. London, Ser. 173 (1928)
[38]J. L. Bredas, B. Themans, J. M. Andre, R. R. Chance, R. Silbey, Synth. Met. 9, 265 (1984)
[39]Y. Li, S. P. Singh, P. Sonar, Adv. Mater. 22, 4862 (2010)
[40]E. Steiner, P. W. Fowler, R. W. A. Havenith, J. Phys. Chem. A 106, 7048 (2002)
[41]G. Horowitz, Adv. Mater. 10, 365 (1998)
[42]A. Rose, ‘‘space-charge-limited currents in solids’’, Phys. Rev. 97 (1955)
[43]C. W. Tang, S. A. Vanslyke, C. H. Chen, J. Appl. Phys. 65, 3610 (1989)
[44]C. Devadoss, P. Bharathi, J. S. Moore, J. Am. Chem. Soc. 118, 9635 (1996)
[45]C. B. Murphy, Y. Zhang, T. Troxler, V. Ferry, J. J. Martin, W. E. Jones, Jr., J. Phys. Chem. B 108, 1537 (2004)
[46]O. Rana, R. Srivastava, R. Grover, M. Zulfequar, M. Husain, M. N. Kamalasanan, Synth. Met. 161, 828 (2011)
[47]S. Y. Kim, J. L. Lee, K. B. Kim, Y.H. Tak, J. Appl. Phys. 95, 2560 (2004)
[48]T. Y. Chu, O. K. Song, Appl. Phys. Lett. 90, 203512 (2007)
[49]J. H. Lee, D. S. Leem, H. J. Kim, J. J. Kim, Appl. Phys. Lett. 94, 123306 (2009)
[50]C. C. Chang, M. T. Hsieh, J. F. Chen, S. W. Hwang, C. H. Chen, Appl. Phys. Lett. 89, 253504 (2006)
[51]T. Matsushima, C. Adachi, J. Appl. Phys. 103, 034501 (2008)
[52]H. Lee, S. W. Cho, K. Han, P. E. Jeon, C. N. Whang, K. Jeong, K. Cho, Y. Yi, Appl. Phys. Lett. 93, 043308 (2008)
[53]Y. Yi, P. E. Jeon, H. Lee, K. Han, H. S. Kim, K. Jeong, S. W. Cho, J. Chem. Phys. 130, 094704 (2009)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code