Responsive image
博碩士論文 etd-0813112-141632 詳細資訊
Title page for etd-0813112-141632
論文名稱
Title
新穎滾筒式近場靜電紡PVDF纖維
New cylindrical near-field electrospun PVDF fibers
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
86
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-21
繳交日期
Date of Submission
2012-08-13
關鍵字
Keywords
滾筒、能量擷取、聚偏氟乙烯、撓性基板、靜電紡絲、壓電纖維
electrospinning, flexible substrate, energy harvesting, cylinder, polyvinylidene fluoride (PVDF), piezoelectric fiber
統計
Statistics
本論文已被瀏覽 5655 次,被下載 598
The thesis/dissertation has been browsed 5655 times, has been downloaded 598 times.
中文摘要
本研究利用近場靜電紡絲製程技術(Near-field Electrospinning),搭配自行發展之滾筒式收集方式,製作出聚偏氟乙烯(Polyvinylidene fluoride,PVDF)壓電纖維,利用壓電纖維機電能轉換特性,結合平行式電極有效擷取低頻振動之能量。於近場靜電紡絲製程中,首先將PVDF粉末均勻散佈於丙酮(Acetone)溶液中,接著加入二甲基亞風(Dimethyl sulfoxide,DMSO)與表面活性劑,調配成PVDF高分子溶液。將PVDF溶液裝填於不鏽鋼針頭的注射器中,於針頭通上10kV左右電壓,當針頭的液滴受107V/m電場吸引而形成泰勒錐狀(Taylor cone),最後突破表面張力噴射出極細的微奈米纖維。接著使用自行發展之滾筒式收集裝置搭配XY雙軸式數位控制平台,可以有序且大量快速的收集壓電纖維並取下使用,藉由驅動電壓與滾筒轉速的調整可以輕易地控制壓電纖維的線徑;本研究使用不同電紡製程參數來觀察參數對於纖維織影響,並使用X光繞射分析儀(X-ray diffraction,XRD)測得β相之壓電結晶結構強度(2θ=20.7度),探討參數對於β相結晶的強度,也就是壓電特性的影響,並進行參數的最佳化。利用最佳化之參數製作壓電纖維,於滾筒上取下後將兩端固定於撓性基板的銅電極上形成能量擷取裝置的結構,當結構上的壓電纖維受到7Hz的振盪頻率、0.23%的應變時,可以得到76mV的電壓訊號;當壓電纖維受到7Hz的振盪頻率、0.14%的應變時,量測到1.1nA的電流訊號。
Abstract
In this study, a cylindrical near-field electrospining (CNFES) process will be used to fabricate permanent piezoelectricity of polyvinylidene fluoride (PVDF) piezoelectric fibers, and a piezoelectric fiber harvesting device with parallel electrode was fabricated to capture ambient energy. First, the PVDF powder was mixed in acetone solution uniformly and the dimethyl sulfoxide (DMSO) was mixed with fluorosurfactant to prepare PVDF macromolecular solution. The PVDF macromolecular solution was filled in a metals needle injector and contacted a high power supply, after the PVDF drops in the needle was subjected to high electric field, the drops became a Taylor cone and overcame surface tension of the solution itself, extremely fine PVDF fiber was formed and jetted out. The fibers were collected numerous and quickly by homemade cylindrical collector and the diameter of fiber could be controlled easily by adjusting the rotating speed of the cylinder and the electric field. From the observation of XRD (X-ray diffraction), it reveals a high diffraction peak at 2θ=20.7° of piezoelectric crystal β-phase structure by adjusting PVDF concentrations and DC voltage. By providing 7Hz shake and 0.23% strain, the piezoelectric fiber harvesting device with parallel electrode could generate 76mV; by providing 7Hz shake and 0.14% strain, the device could generate 1.1nA.
目次 Table of Contents
第一章 緒論 1
1-1 前言 1
1-2 研究背景與動機 1
1-3 研究目的 2
第二章 文獻回顧 4
2-1 靜電紡絲製程 4
2-2 壓電材料相關研究 6
2-3 PVDF壓電材料特性 8
2-4 壓電效應 9
2-4-1 正壓電效應 10
2-4-2 逆壓電效應 10
2-4-3 極化處理 11
2-4-4 壓電訊號 12
第三章 研究方法 13
3-1 滾筒式近場靜電紡絲設備介紹 13
3-2 滾筒式收集裝置介紹 14
3-3 PVDF溶液調配流程 18
3-3-1材料準備 18
3-3-2調配流程 19
3-4 PVDF溶液的特徵 21
3-5 滾筒式近場電紡 22
3-6 驅動電壓 24
3-7 滾筒轉速 25
3-8 不鏽鋼針頭尺寸 25
3-9 掃描式電子顯微鏡(SEM) 26
3-10 X光射線繞射儀(XRD) 28
3-11 能量擷取裝置製作 30
3-12 量測儀器 32
3-12-1 電壓量測 32
3-12-2電流量測 32
第四章 結果與討論 34
4-1 PVDF近場靜電紡絲 34
4-2 滾筒式收集裝置的控制與收集能力觀察 35
4-3 滾筒轉速 37
4-4 電壓大小 38
4-5 SEM觀察與分析 40
4-6 XRD觀察與分析 42
4-6-1 電場強度 43
4-6-2 PVDF溶液濃度 45
4-7 PVD能量擷取裝置發電性量測 47
4-7-1 電壓量測 47
4-7-2 電流量測 58
第五章 結論及未來展望 66
5-1 結論 66
5-2 未來展望 67
參考文獻 68

參考文獻 References
1. A. Formhals, US Patent, No. 1975504, 1934.
2. G.I. Taylor, “Electrically driven jets,” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 313, pp. 453-475, 1969.
3. E.D. Boland, G.E. Wnek, D.G. Simpson, K.J. Pawlowski and G.L. Bowlin, “Ailoring tissue engineering scaffolds using electrostatic processing techniques: A study of poly (glycolic acid) electrospinning,” Journal of Macromolecular Science, Vol. 38, pp. 1231-1243, 2001.
4. D. Li, Y. Wang and Y. Xia, “Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays,” Nano Letters, Vol. 3, No. 8, pp. 1167-1171, 2003.
5. J. Kameoka, R. Orth, Y. Yang, D. Czaplewski, R. Mathers, G.W. Coates and H.G. Craighead, “A scanning tip electrospinning source for deposition of oriented nanofibres,” Nanotechnology, Vol. 14, No. 10, pp. 1124-1129, 2003.
6. A. Theron, E. Zussman and A.L. Yarin, “Electrostatics field assisted alignment of electrospun nanofibers,” Nanotechnology, Vol. 12, pp. 384, 2001.
7. Z. Zhao, J. Li, X. Yuan, X. Li, Y. Zhang and J. Sheng, “Preparation and properties of electrospun poly(vinylidene flouride) membranes,” Journal of Applied Polymer Science, Vol. 97, pp. 466–474, 2005.
8. X. Ren and Y. Dzenis, “Novel continuous poly (vinylidene fluoride) nanofibers,” Materials Research Society Symposium Proceedings library, Vol. 920, pp. 55–61, 2006.
9. C. Chang, Y.K. Fuh and L.W. Lin, ”A direct-write piezoelectric PVDF nanogenerator,” Solid-State Sensors, Actuators and Microsystems Conference, pp. 1485-1488, 2009.
10. C. Chang, V.H. Tran, J. Wang, Y. Fuh and L.W. Lin, “Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency,” Nano letters, Vol. 10, pp. 726–731, 2010.
11. D. Sun, C. Chang, S. Li and L.W. Lin, “Near-field electrospinning,” Nano letters, Vol. 6, pp. 839–842, 2006.
12. C. Chang, K. Limkrailassiri and L.W. Lin, “Continuous near-field electrospinning for large area deposition of orderly nanofiber patterns,” Applied Physics Letters, Vol. 93, No. 123111, 2008.
13. J. Pu, X.J. Yan, Y.D. Jiang, C. Chang and L.W. Lin, “Piezoelectric actuation of a direct write electrospun PVDF fiber,” Micro Electro Mechanical Systems, IEEE 23rd International Conference on, pp. 1163-1166, 2010.
14. J. Pu, X.J. Yan, Y.D. Jiang, C. Chang and L.W. Lin, “Piezoelectric actuation of direct-write electrospun fibers,” Sensors and Actuators A: Physical, Vol. 164, pp. 131-136, 2010.
15. 吳朗,“電子陶瓷:壓電陶瓷”,全欣資訊圖書股份有限公司,1994年12月。
16. J.F. Nye, “Physical properties of crystals,” Oxford, U.K.: Clarend Press, 1957.
17. X. Chen, S. Xu and N. Yao, “1.6 V Nanogenerator for mechanical energy harvesting using PZT nanofibers,” Nano Letters, Vol. 10, No. 6, pp. 2133-2137, 2010.
18. Z.L. Wang and J. Song, “Piezoelectric nanogenerators based on zinc oxide nanowire arrays,” Science 14, Vol. 312, No. 5771, pp. 242-246, 2006.
19. C. Xu and Z.L. Wang, “Compact hybrid cell based on a convoluted nanowire structure for harvesting solar and mechanical energy,” Advanced Materials, Vol. 23, pp. 873-877, 2011.
20. D. Sun and J.K. Mills, “Control of a rotating cantilever beam using a torque actuator and a distributed piezoelectric polymer actuator,” Applied Acoustics, Vol. 63, pp. 885–899, 2002.
21. M.J. Tseng and W.Z. Wu, “Analytical and experimental investigation on vibration control of piezoelectric structures,” Structural Vibration and Acoustics, Vol. 34, pp. 33–42, 1991.
22. H.S. Tzou and C.I. Tseng, “Distributed piezoelectric sensor/actuator design for dynamic measurement control of distributed parameter system: a piezoelectric finite element approach,” Journal of Sound and Vibration, Vol. 138, pp. 17–34, 1990.
23. Z. Li and P.M. Bainum, “Vibration control of flexible spacecraft integrating a momentum exchange controller and a distributed piezoelectric actuator,” Journal of Sound and Vibration, Vol. 177, pp. 539–553, 1994.
24. D.J Spearritt and S.F. Asokanthan, “Torsional vibration control of a flexible beam using laminated PVDF actuators,” Journal of Sound and Vibration, Vol. 193, pp.941–956, 1996.
25. S.F. Asokanthan and M. Gu, “Distributed control of flexible structure: theory and experiment,” Proceedings of Asia-Pacific Control Conference, pp.539–553, 1995.
26. X. Chen, S.Y. Xu and N. Yao, “1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers,” Nano Letters, Vol. 10, No. 6, pp. 2133-2137, 2010.
27. F. Li and W.T. Liu, “A novel bioinspired PVDF micro/nano hair receptor for a robot sensing system,” Sensor, Vol. 10, pp. 994-1011, 2010.
28. H Kawai, “The piezoelectricity of poly (vinylidene fluoride),” Japanese Journal of Applied Physics, Vol. 8, pp. 975-976, 1969.
29. J.M. Haa, H.O. Limb and N.J. Jo, “Actuation behaviorof cp actuator based on polypyrrole and PVDF,” Advanced Materials Research, Vol. 29, pp. 363-366, 2007.
30. T.T. Wang, J.M. Herbert and A.M. Glass, “The applications of ferroelectric polymers,” Chapman & Hall, New York, 1988.
31. I.S. Elashmawi, E.M. Abdelrazek, H.M. Ragab and N.A. Hakeem, “Structural, optical and dielectric behavior of PVDF films filled with different concentrations of iodine,” Physica B: Condensed Matter, Vol. 405, pp. 94–98, 2010.
32. M. Neidhofer, F. Beaume, L. Ibos, A. Bernes and C. Lacabanne, “Structural evolution of PVDF during storage or annealing,” Polymer, Vol. 45, pp. 1679–1688, 2004.
33. Y. Peng and P. Wu, “A two dimensional infrared correlation spectroscopic study on the structure changes of PVDF during the melting process,” Polymer, Vol. 45, pp. 5295–5299, 2004.
34. P. Sajkiewicz, A. Wasiak and Z. Goclowski, “Phase transitions during stretching of poly (vinylidene fluoride),” European Polymer Journal, Vol. 35, pp.423–429, 1999.
35. Y. Chen and C.Y. Shew, “Conformational behavior of polar polymer models under electric fields,” Chemical Physics Letters, Vol. 378, pp. 142–147, 2003.
36. J. Chang, M. Dommer, C. Chang and L.W. Lin, ”Piezoelectric nanofibers for energy scavenging applications”, Nano Energy, Vol. 1, pp. 356-371, 2012.
37. Z.Y. Ou, Z.H. Liu, C.T. Pan, L.W. Lin, Y.J. Chen, H.W. Lai, “Study on piezoelectric properties of near-field electrospinning PVDF/MWCNT nano-fiber”, Nano/Micro Engineered and Molecular Systems (NEMS), 2012 7th IEEE International Conference on, pp. 125-128, 2012.
38. T.R. Dargaville, M. Celina and P.M. Chaplya, “Evaluation of piezoelectric poly (vinylidene fluoride) polymers for use in space environments. I. Temperature limitations”, Journal of Polymer Science Part B: Polymer Physics, Vol.43, pp. 1310-1320, 2005.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code