Responsive image
博碩士論文 etd-0813112-154120 詳細資訊
Title page for etd-0813112-154120
論文名稱
Title
陰極緩衝層對有機太陽能電池的影響
The influence of cathode buffer layers on the performance of organic solar cells
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
143
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-06
繳交日期
Date of Submission
2012-08-13
關鍵字
Keywords
有機太陽能電池、紅位移、陰極緩衝層
buffer layer, TiOPc
統計
Statistics
本論文已被瀏覽 5637 次,被下載 561
The thesis/dissertation has been browsed 5637 times, has been downloaded 561 times.
中文摘要
在有機太陽能電池中,元件的電性在功率轉換效率扮演著重要的角色。而材料的選擇、元件的結構、不同層界面的形態等間接影響著元件的電性。由文獻中指出有研究團隊在陰極與主動層之間加入緩衝層藉此改善元件效率。此外有文獻指出,因此 tandem 結構中, Top cell 和 Bottom cell 的主動層各自吸收不同波段的光譜,使得整體元件有更寬廣的吸收光譜,藉此來提高效率。
綜合以上兩種結論,本研究將在主動層和陰極之間加入緩衝層,期望能夠增加元件之電性,並且增加整體元件之吸收光譜範圍,而元件之設計除了能階匹配的考量外,其吸收波段需與主動層不重疊,以達到增加元件之吸收光譜範圍。因此本研究選用的材料為TiOPc,其吸收波段介於 600~800 nm 之間,藉此達到更為寬廣的吸收光譜範圍。經由實驗發現,當以 AM1.5G 100mW/cm2 的太陽光模擬系統量測下,在 TiOPc 厚度為 1 nm 時退火前功率效率可由標準元件 0.97 % 提升至 1.77 %,功率轉換效率提升約82.4 %。主要提升原因為開路電壓由 0.40 V 提升至 0.56 V 以及短路電流密度由5.62 mA/cm2 提升至 6.16 mA/cm2和填充因子由 0.428 提升至 0.511。而經過退火溫度為 140 °C時,其功率轉換效率相較退火後之標準元件由1.46 % 升至 2.12 %,提升了45.2 %。主要提升的原因為短路電流密度由6.16 mA/cm2 提升至 7.13 mA/cm2。本研究之具有緩衝層元件結構如下
ITO(1750 Å)/PEDOT:PSS(500 Å)/
P3HT:PCBM(800 Å)/TiOPc(10 Å)/Al(2000 Å) ,元件面積為0.16 cm2。
Abstract
According to the literature, the choice of the material, the device structure and the morphology of the active layer play an important role in the performance of the organic solar cell. For instance, many groups insert buffer layer between cathode and active layer to improve device efficiency. Otherwise, the tandem structure have attracted much attention due to different absorbing spectra of the top and bottom cells which can improve the device efficiency.
In this study, we select TiOPc as the interlayer material because it can both extend the device absorption spectra and improve device performance. In our results, the thickness of 1 nm TiOPc has the best device efficiency based on the device structure ITO(1750 Å)/PEDOT:PSS(500 Å)/ P3HT:PCBM(800 Å)/TiOPc(10 Å)/Al(2000 Å) and the device area of 0.16 cm2, the performance increase from 0.97 % to 1.77 % compared to standard device under AM1.5 simulation light before post annealing. (which is 82.4 % improved). This consequence can be attributed to a increase open voltage from 0.40 V to 0.56 V, a short increas current density from 5.62 mA/cm2 to 6.16 mA/cm2 and fill factor increased from 0.428 to 0.511. After post annealing at 140 °C, the power efficiency increase for 45.2 % contrast to standard post annealing.
目次 Table of Contents
誌謝 I
中文摘要 III
Abstract V
目錄 VI
圖目錄 X
表目錄 XV
第一章 緒論 1
1-1 替代性能源 1
1-2 太陽能電池的定義 3
1-3 無機與有機太陽能電池介紹 4
1-4 有機太陽能電池結構演進 6
1-4-1 單層結構有機太陽能電池 6
1-4-2 雙層異質界面結構有機太陽能電池 7
1-4-3 混合層異質界面結構有機太陽能電池 8
1-4-4 接合層異質界面結構有機太陽能電池 12
1-5 緩衝層 14
1-5-1 陽極緩衝層 16
1-5-2 陰極緩衝層 19
1-6 研究動機 22
第二章 理論基礎 24
2-1 能量及電荷轉移機制 24
2-2 光電轉換原理 26
2-3 太陽能電池等效電路 32
2-4 光電特性參數 34
2-4-1 短路電流(Short Circuit Current,簡稱Isc) 35
2-4-2 開路電壓(Open Circuit Voltage,簡稱Voc) 35
2-4-3 填充因子(Fill Factor,簡稱FF) 36
2-4-4 功率轉換效率(Power Conversion Efficiency,ηP) 36
2-5 太陽光模擬 38
第三章 實驗流程 43
3-1 實驗架構 43
3-2 實驗材料 45
3-3 藥品配置 48
3-3-1 電洞傳輸層PEDOT:PSS 48
3-3-2 主動層P3HT/PCBM 48
3-4 實驗步驟 49
3-4-1 ITO陽極圖形化 49
3-4-2 ITO玻璃基版清洗 51
3-4-3 有機太陽能電池元件製程 52
3-5 製程設備 55
3-5-1 超音波清洗機(Ultrasonic cleaning) 55
3-5-2 加熱盤 (Hot plate) 55
3-5-3 電漿清洗機(O2 plasma) 55
3-5-4 旋轉塗佈機(Spin coater) 56
3-5-5 手套箱(Glove box) 57
3-5-6 蒸鍍機(Evaporator) 58
3-5-7 紫外光曝光機(UV exposure) 58
3-6 量測儀器 59
3-6-1 紫外光/可見光光譜儀(UV-Vis) 59
3-6-2 表面輪廓儀(Surface profiler) 60
3-6-3 原子力顯微鏡 (AFM) 61
3-6-4 入射光子轉換效率 ( Incident Photon Conversion Efficiency) 65
3-6-5 太陽光譜模擬量測系統 ( Solar simulator system) 66
第四章 結果與討論 68
4-1 基礎分析 68
4-1-1 UV-Vis量測吸收光譜 68
4-1-2 AFM薄膜形態 75
4-2 元件特性 96
4-2-1 優化緩衝層最佳厚度 96
4-2-2 優化退火溫度 101
4-2-3 元件暗電流量測及探討 108
總結 116
參考文獻 118
參考文獻 References
[1] NASA, world energy statistics and balances OECD/IEA, National Renewable Energy Laboratory, (2008).
[2] C. Y. Yang, A. J. Heeger, Syn. Met., 83, 85, (1996).
[3] G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, Science, 270, 1789, (1995).
[4] S. E. Shaheen, C. J. Braber, N. S. Sariciftci, F. Padinger, T. Fromherz, J. C. Hummelen, Appl. Phys. Lett., 78, 841, (2001).
[5] M. Al-Ibrahim, O. Ambacher, S. Sensfuss, G. Gobsch, Appl. Phys. Lett., 86, 201120, (2005).
[6] H. Hoppe, M. Niggemann, C. Winder, J. Kraut, R. Hiesgen, A. Hinsch, D. Meissner, N. S. Sariciftci, Adv. Func. Mater., 14, 1005, (2004).
[7] J. K. Lee, W. L. Ma, C. J. Brabec, J. Yuen, J. S. Moon, J. Y. Kim, K. Lee, G. C. Bazan, A. J. Heeger, J. Am. Chem. Soc., 130, 3619, (2008).
[8] Y. Liang, Z. Xu, J. Xia, S. T. Tsai, Y. Wu, G. Li, C. Ray, L. Yu, Adv. Mater., 22, E135, (2010).
[9] J. Peet, M. L. Senatore, A. J. Heeger, G. C. BaZan, Adv. Mater., 21, 1521, (2009).
[10] E. Bundgaard, F. C. Krebs, Sol. Energ. Mat. Sol. C., 91, 954, (2007).
[11] R. Kroon, M. Lenes, J. C. Hummelen, P. W. M. Blom, B. D. Boer, Polym. Rev., 48, 531, (2008).
[12] J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. Q. Nguyen, M. Dante, A. J. Heeger, Science, 317, 222, (2007).
[13] L. M. Chen, Z. Hong, G. Li, Y. Yang, Adv. Mater., 21, 1434, (2009).
[14] R. Po, C. Carbonera, A. Bernardi, N. Camaioni, Energy Environ. Sci., 4, 285, (2011)
[15] H. Ma, H. L. Yip, F. Huang, A. K. Y. Jen, Adv. Funct. Mater., 20, 1371, (2010).
[16] C. Y. Jiang, X. W. Sun, D. W. Zhao, A. K. K. Kyaw, Y. N. Li, Sol. Energ. Mat. Sol. C., 94, 1618, (2010).
[17] N. S. Kang, B. K. Ju, C. Lee, J. P. Ahn, B. D. Chin, J. W. Yu, Org. Electron., 10, 1091, (2009).
[18] A. Elschner and S. Kirchmeyer, in ref. 3, chap. 7.
[19] G. Li, C. W. Chu, V. Shrotriya, J. Huang, Y. Yang, Appl. Phys. Lett., 88, 253503, (2006).
[20] T. W. Lee, Y. Chung, Adv. Funct. Mater., 18, 2246, (2008).
[21] N. S. Kang, B. K. Ju, C. Lee, J. P. Ahn, B. D. Chin, J. W. Yu, Org. Electron., 10, 1091, (2009).
[22] Y. Kim, A. M. Ballantyne, J. Nelson, D. D. C. Bradley, Org. Electron., 10, 205, (2009).
[23] H. K. Lee, J. K. Kim, O. O. Park, Org. Electron., 10, 1641, (2009).
[24] T. S. Huang, C. Y. Huang, Y. K. Su, J. S. Fang, M. V. M. Rao, T. F. Guo, T. C. Wen, IEEE Photonic. Tech. L., 20, 1935, (2008).
[25] S. H. Eom, S. Senthilarasu, P. Uthirakumar, S. C. Yoon, J. Lim, C. Lee, H. S. Lim, J. Lee, S. H. Lee, Org. Electron., 10, 536, (2009).
[26] T. Xiao, W. Cui, J. Anderegg, J. Shinar, R. Shinar, Org. Electron., 12, 257, (2011).
[27] F. C. Chen, J. L. Wu, C. L. Lee, Y. Hong, C. H. Kuo, M. H. Huang, Appl. Phys. Lett., 95, 013305, (2009).
[28] B. Yin, Q. Liu, L. Y. Yang, X. M. Wu, Z. F. Liu, Y. L. Hua, S. G. Yin, Y. S. Chen, J. Nanosci. Nanotechno., 10, 1934, (2010).
[29] C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchen, J. C. Hummelen, Adv. Funct. Mater., 11,374, (2001).
[30] V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen, M. T. Rispens, J. Appl. Phys., 94, 6849, (2003).
[31] V. D. Mihailetchi, L. J. A. Koster, P. W. M. Blom, Appl. Phys. Lett., 85, 970, (2004).
[32] L. S. Hung, C. W. Tang, M. G. Mason, Appl. Phys. Lett., 70, 152, (1997).
[33] C. J. Brabec, S. E. Shaheen, C. Winder, N. S. Sariciftci, P. Denk, Appl. Phys. Lett., 80, 1288, (2002).
[34] J. Lee, Y. Park, D. Y. Kim, H. Y. Chu, H. Lee, L. M. Do, Appl. Phys. Lett., 82, 173, (2003).
[35] S. E. Shaheen, G. E. Jabbour, M. M. Morrell, Y. Kawabe, B. Kippelen, N. Peyghambarian, M. F. Nabor, R. Schlaf, E. A. Mash, N. R. Armstrong, J. Appl. Phys., 84, 2324, (1998).
[36] J. H. Lee, S. Cho, A. Roy, H. T. Jung, A. J. Heeger, Appl. Phys. Lett., 96, 163303, (2010).
[37] A. Hayakawa, O. Yoshikawa, T. Fujieda, K. Uehara, S. Yoshikawa, Appl. Phys. Lett., 90, 163517, (2007).
[38] K. Lee, J. Y. Kim, S. H. Park, S. H. Kim, S. Cho, A. J. Heeger, Adv. Mater., 19, 2445, (2007).
[39] J. Y. Kim, S. H. Kim, H. H. Lee, K. Lee, W. Ma, X. Gong, A. J. Heeger, Adv. Mater., 18, 572, (2006).
[40] Z. Feng, Y. Hou, D. Lei, Renew. Energ., 35, 1175, (2010).
[41] H. Z. Yu, J. B. Peng, Org. Electron., 9, 1022, (2008).
[42] B. Paci, A. Generosi, V. R. Albertini, P. Perfetti, R. D. Bettignies, J. Phys. Chem. C, 113, 19740, (2009).
[43] F. C. Chen, S. C. Chien, J. Mater. Chem., 19, 6865, (2009).S. H. Oh, S. I. Na, J. Jo, B. Lim, D. Vak, D. Y. Kim, Adv. Funct.
[44] S. H. Oh, S. I. Na, J. Jo, B. Lim, D. Vak, D. Y. Kim, Adv. Funct. Mater., 20, 1977, (2010).
[45] D. Muhlbacher, M. Scharber, M. Morana, Z. G. Zhu, D. Waller, R. Gaudiana, C. Brabec, Adv. Mater., 18, 2884, (2006).
[46] F. L. Zhang, W. Mammo, L. M. Andersson, S. Admassie, M. R. Andersson, L. Inganas, S. Admassie, M. R. Andersson, O. Ingands, Adv. Mater., 18, 2169, (2006).
[47] A. Hadipour, B. D. Boer, P. W. M. Blom, J. Appl. Phys., 102, 074506, (2007).
[48] S. Sista, M. H. Park, Z. Hong, Y. Wu, J. Hou, W. L. Kwan, G. Li, Y. Yang, Adv. Mater., 22, 380, (2010).
[49] F. Cheng, G. Fang, X. Fan, N. Liu, N. Sun, P. Qin, Q. Zheng, J. Wan, X. Zhao, Sol. Energ. Mat. Sol. C., 95, 2914, (2011).
[50] T. Saito, Y. Iwakabe, T. Kobayashi, S. Suzuki, T. Iwayanagi, J. Phys. Chem., 98, 2726, (1994).
[51] M. A. Green, Solar Cells: Operating Principles, Technology, and System Application, University of NSW, Kensington, Australia, (1992).
[52] 莊嘉琛, 太陽能工程-太陽電池篇, 全華, (1997).
[53] 陳一帆, 碩士論文, 國立中山大學光電工程研究所, (2005).
[54] W. Hiller, J. Strahle, W. Kobel, M. Hanack, Z. Kristallogr., 159, 173, (1982).
[55] T. Saito, Y. Iwakabe, T. Kobayashi, S. Suzuki, T. Iwayanagi, J. Phys. Chem., 98, 2726, (1994).
[56] J. Fujimaki, H. Tadokoro, Y. Oda, H. Yoshioka, T. Tomma, H. Morigushi, K. Watanabe, A. Konishita, N. Hirose, A. Itami, S. Ikeuchi, J. Imag. Tech., 17, 202, (1991).
[57] O. Okada, K. Oka, M. Iijima, Jpn. J. Appl. Phys., 32, 3556, (1993).
[58] N. Coppede, T. Toccoli, A. Pallaoro, F. Siviero, K. Walzer, M. Castriota, E. Cazzanelli, S. Iannotta, J. Phys. Chem. A, 111, 12550, (2007).
[59] R. Ye, D. Xiong, M. Yanagida, K. Ohta, T. Abe, M. Baba, J. Phys. Conf. Ser., 358, 012013, (2012).
[60] M. Brinkmann, J. C. Wittmann, M. Barthel, M. Hanack, C. Chaumont, Chem. Mater., 14, 904, (2002).
[61] A. Yamashita, T. Maruno, T. Hayashi, J. Phys. Chem., 98, 12695, (1994).
[62] T. D. Cano, V. Parra, M. L. Rodriguez-Mendez, R. F. Aroca, J. A. D. Saja, Appl. Surf. Sci., 246, 327, (2005).
[63] S. Kazim, M. Zulfequar, M. M. Haq, P. K. Bhatnagar, M. Husain, Sol. Energ. Mat. Sol. C., 91, 1462, (2007).
[64] Y. A. M. Ismail, T. Soga, T. Jimbo, Sol. Energ. Mat. Sol. C., 93, 1582, (2009).
[65] G. Li, V. Shrotriya, Y. Yao, Y. Yang, J. Appl. Phys., 98, 043704, (2005).
[66] J. Mizuguchi, G. Rihs, H. R. Karfunkel, J. Phys. Chem., 99, 16217, (1995).
[67] M. C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, C. J. Brabec, Adv. Mater., 18, 789, (2006).
[68] V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen, and M. T. Rispens, J. Appl. Phys., 94, 6849, (2003).
[69] 廖啟均, 碩士論文, 國立台灣科技大學電子工程研究所, (2007).
[70] B. P. Rand, J. Genoe, P. Heremans, J. Poortmans, Prog. Photovolt: Res. Appl., 15, 659, (2007).
[71] C. J. Brabec, V. Dyakonov, J. Parisi, N. S. Sariciftci, Organic Photovoltaic: Concepts and Realization, (2003).
[72] S. O. Jeon, K. S. Yook, B. D. Chin, Y. S. Park, J. Y. Lee, Sol. Energ. Mat. Sol. C., 94, 1389, (2010).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code