Responsive image
博碩士論文 etd-0813112-170206 詳細資訊
Title page for etd-0813112-170206
論文名稱
Title
IEEE 802.15.4a-2007 脈衝超寬頻系統之基頻訊號處理與電路設計
The Baseband Signal Processing and Circuit Design for IEEE 802.12.4a-2007 Impulse Radio Ultra-Wideband System
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
63
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-30
繳交日期
Date of Submission
2012-08-13
關鍵字
Keywords
非同調能量偵測架構、脈衝超寬頻、基頻訊號處理
ZigBee, non-coherent energy detection scheme, impulse radio UWB, IEEE 802.15.4a, baseband signal processing
統計
Statistics
本論文已被瀏覽 5668 次,被下載 447
The thesis/dissertation has been browsed 5668 times, has been downloaded 447 times.
中文摘要
近年來由於對無線感測網路,與短距離無線控制器等應用的需求不斷提高,致使ZigBee技術蓬勃的發展。ZigBee是專門為了短距離、低速率、低成本的無線傳輸需求所發展的通訊技術,具有短距離、低速率、低成本與低耗電等特性。它的軟體規格由ZigBee Aliance組織制定,而硬體規格由IEEE 802.15.4小組所制定。
本論文所探討的IEEE 802.15.4a-2007a脈衝超寬頻實體層(Impulse Radio Ultra-Wideband Physical Layer)為此系列實體層的其中之一,在我們的研究中設計了一個符合規格的收發機基頻訊號處理演算法,在傳送端的訊號處理流程是根據標準所制定的方式進行,接收端部分採用了非同調能量偵測架構(Non-Coherent Energy Detection Scheme),並且以此架構進行接收端基頻演算法的設計,在我們的基頻演算法中包括了:封包偵測、時間同步與解調變(De-Modulation)等處理,同時在設計演算法時考慮其硬體電路之實現方式並且盡可能的達成整體電路的簡化以及整體電路的使用效率。
最後,我們所設計的接收端演算法比起標準所給定的靈敏度的預計操作SNR還要好上3.9dB,並且整體演算法可以達成很好的電路共用性。
Abstract
In recent years, the requirement of application such as wireless sensor networks and short-range wireless controllers caused the growing of ZigBee technology. ZigBee is a communication technology developed specifically for short-range, low rate, low-cost wireless transmission.There are some characteristic such as short-range, low rate, low cost, and low power. The ZigBee Aliance group developed the specifications of software, and IEEE 802.15.4 group developed the specifications of hardware.
IEEE 802.15.4a impulse radio UWB physical layer is one of the ZigBee physical layers. In our study, we designed a baseband signal processing algorithm meeting the specifications of IEEE 802.15.4a. The data processing flow in transmitter followed the specifications. In receiver, we designed baseband algorithms based-on the non-coherent energy detection scheme. Our algorithm including packet detection, synchronization and demodulation, and considering the implementation of algorithm, reducing the complexity of hardware as possible and improving the efficiency. Finally, the system performance is 3.9dB better than the receiver sensitivity.
目次 Table of Contents
論文審定書 i
致謝 ii
中文摘要 iii
Abstract iv
目錄 v
圖次 vii
表次 ix
第一章 導論 1
1.1 前言 1
1.2 研究背景與動機 2
1.3 論文架構 3
第二章 IEEE 802.15.4a 實體層標準介紹 4
2.1 實體層介紹 4
2.2 Ultra-Wideband 實體層標準 4
2.2.1 實體層架構 4
2.2.2 UWB的PPDU格式 6
2.2.3 前導符元 7
2.2.4 前導符元延展 8
2.2.5 同步段落 8
2.2.6 訊框起始符元 9
2.2.7 頻帶與通道規劃 9
2.3 Ultra-Wideband 實體層調變 9
2.3.1 調變概述 9
2.3.2 SHR調變 10
2.3.3 叢發位置與二位元相移鍵控調變 11
2.3.4 極性攪亂與跳時產生器 14
2.3.5 跳時產生器 14
2.3.6 線性回授移位暫存器初始值 15
2.4 脈波整型 15
2.5 靈敏度 16
2.6 實體層最低實現規格 18
第三章 IEEE 802.15.4a UWB基頻演算法設計 19
3.1 收發機架構圖 19
3.2 無線通道與系統模擬 20
3.3 接收機之基頻演算法設計 22
3.3.1 封包偵測 23
3.3.2 訊號累加器 26
3.3.3 時間同步 27
3.3.4 SFD搜尋 32
3.3.5 解調變 35
3.3.6 電路規劃 36
3.3.7 模擬分析 38
第四章 結論 42
參考文獻 43
中英對照表 47
縮寫對照表 52
參考文獻 References
[1] IEEE Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specification for Low-Rate Wireless Personal Area Networks (LR-WPANs), IEEE Std. 802.15.4a-2007, Sep. 2007.
[2] IEEE Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specification for Low-Rate Wireless Personal Area Networks (LR-WPANs), IEEE Std. 802.15.4-2006, Sep. 2006.
[3] “IEEE 802.15.4a channel model - final report,” 2004.
[4] I. Oppermann, M. Hamalainen, and J. Linatti, UWB Theory and Applications. WILEY, 2004.
[5] K. Siwiak and D. McKeown, Ultra-Wideband Radio Technology. WILEY, 2004.
[6] M. Ghavami, L. B. Michael, and R. Kohno, Ultra Wideband Signals and Systems in Communication Engineering. WILEY, 2004.
[7] P. P. Mercier, M. Bhardwaj, D. C. Daly, and A. P. Chandrakasan, “A low-voltage energy-sampling IR-UWB digital baseband employing quadratic correlation,” IEEE J. Solid-State Circuits, vol. 45, no. 6, pp. 1209–1219, June 2010.
[8] F. S. Lee and A. P. Chandrakasan, “A 2.5 nJ/bit 0.65 V pulsed UWB receiver in 90 nm CMOS,” IEEE J. Solid-State Circuits, vol. 42, no. 12, pp. 2851–2859, Dec 2007.
[9] J. -Y. Lee and R. A. Scholtz, “Ranging in a dense multipath environment using an UWB radio link,” IEEE J. Sel. Areas Commun., vol. 20, no. 6, pp. 1677–1683, Dec. 2002.
[10] A. A. D’Amico, U. Mengali, and E. Arias-de-Reyna, “Energy-detection UWB receivers with multiple energy measurements,” IEEE Trans. Wireless Commun., vol. 6, no. 7, pp. 2652–2659, July 2007.
[11] M. Flury, R. Merz, and J. L. Boudec, “Synchronization for impulse-radio UWB with energy-detection an multi-user interference: algorithms and application to IEEE 802.15.4a,” IEEE Trans. Signal Process., vol. 59, no. 11, pp. 5458–5472, Nov. 2011.
[12] S. Cui, Y. L. Guan, K. C. Teh, and K. H. Li, “Pseudocoherent detection of OOK/PPM signals as zero-delay transmitted-reference signals with bandpass downsampling for UWB communications,” IEEE Trans. Veh Technol., vol. 58, no. 8, pp.4141–4148, Oct. 2009.
[13] V. Lottici, A. D’Andrea, and U. Mengali, “Channel estimation for ultra-wideband communications,” IEEE J. Sel. Areas Commun., vol. 20, no. 9, pp. 1638–1645, Dec. 2002.
[14] C. Hu, R. Khanna, J. Nejedlo, K. Hu, H. Liu, and P. Y. Chiang, “A90 nm-CMOS, 500 Mbps, 3–5 GHz fully-integrated IR-UWB transceiver with multipath equalization using pulse injection-locking for receiver phase synchronization,” IEEE J. Solid-State Circuits, vol. 46, no. 5, pp. 1076–1088, May 2011.
[15] C.-C. Wang, G.-N. Sung, J.-M. Huang, L.-H. Lee, and C.-P. Li, “A low-power 2.45 GHz WPAN modulator/demodulator,” Microelectronics Journal, vol. 41, no. 2-3, pp. 150-154, Feb./Mar. 2010.
[16] C.-C. Wang, C.-C. Huang, J.-M. Huang, C.-Y. Chang, and C.-P. Li, “ZigBee 868/915 MHz modulator/ demodulator for wireless personal area network,” IEEE Trans. on VLSI, vol. 16, no. 7, pp.936-939, July 2008.
[17] T.-Y. Wang, C.-P. Li, and Y.-L. Zhang, “Distributed detection in UWB-IR sensor networks with randomization of the number of pulses,” in Proc. 2008 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (IEEE BMSB 2008), Las Vegas, NV, USA, March 31 - April 2, 2008.
[18] C.-C. Wang, J.-M. Huang, C.-Y. Chang, and C.-P. Li, “A 6.57 mW ZigBee transceiver for 868/915 MHz band,” in Proc. 2006 IEEE Inter. Symp. on Circuits and Systems (IEEE ISCAS 2006), Island of Kos, Greece, 21-24 May 2006, pp. 5195-5198.
[19] C.-C. Wang, J.-M. Huang, L.-H. Lee, S.-H. Wang, and C.-P. Li, “A low-power 2.45 GHz ZigBee transceiver for wearable personal medical devices in WPAN,” in Proc. 2007 IEEE Inter. Conf. on Consumer Electronics (IEEE ICCE 2007), Las Vegas, USA, 10-14 January, 2007, pp. 10.2-5.
[20] C.-C. Wang, J.-M. Huang, C.-Y. Chang, and C.-P. Li, “868/915 MHz ZigBee rceiver for personal medical assistance,” in Proc. 2006 IEEE Inter. Conf. on Consumer Electronics (IEEE ICCE 2006), Las Vegas, USA, 12-14 January, 2006, pp. 461-462.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code