Responsive image
博碩士論文 etd-0813112-180718 詳細資訊
Title page for etd-0813112-180718
論文名稱
Title
Co 奈米結構生長在 graphene/Pt(111) 上的結構與磁性研究
Study of the Structural and Magnetic Properties for Nanostructured Co on Graphene/Pt(111)
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
71
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-06-29
繳交日期
Date of Submission
2012-08-13
關鍵字
Keywords
磁性、結構、析出、石墨烯、鈷
segregate, structure, magnetism, Co, graphene
統計
Statistics
本論文已被瀏覽 5697 次,被下載 2001
The thesis/dissertation has been browsed 5697 times, has been downloaded 2001 times.
中文摘要
為 了 了 解 鐵 磁 性 物 質 Co 長 在 graphene/Pt(111) 上 的 磁 特 性 , 本 實 驗 先 在 Pt(111) 上製備 graphene,而後在 graphene 上鍍上鐵磁物質 Co,形成 Co/graphene/Pt(111)。在超高真空腔中,我們使用高溫退火 (annealing) 的方式製備 graphene,使碳原子在 Pt(111) 晶體中析出 (segregate) 到晶體表面,而形成
graphene。使用掃描試穿隧電子顯微鏡 (Scanning Tunneling Microscopy,STM) 及低能量電子繞射儀 (Low Election Energy Diffraction,LEED) 確認 graphene
成長在 Pt(111) 上的特性。接著,在低溫 (約 200 K) 下,使用電子束蒸鍍鎗 (Electron Beam Evaporator) 蒸鍍 3 到 25 ML 的 Co 在 graphene/Pt(111) 上,透過 X 射線磁圓偏振二向性 (X-ray magnetic circular dichroism,XMCD) 的量測,得知不同厚度 Co/graphene/Pt(111) 的鐵磁特性,且利用 STM 觀察少數層
Co/graphene/Pt(111) 的成長行為。經由一系列的研究與分析後,我們從 X 光吸收能譜中發現,大於 15 ML Co/graphene/Pt(111) 具有鐵磁訊號,而在少數層的
Co/graphene/Pt(111) 時,並不具有鐵磁特性。觀察 STM 的影像,顯示少數層 (<3 ML) Co 在 graphene 上呈現顆粒的形態。
Abstract
In this study, we aimed to investigate the magnetic properties of the Co/graphene/Pt(111). Firstly, we used the annealing technique to prepare graphene. The car-
bon atoms were segregated from the bulk of the Pt(111) to form graphene eager on the surface. After the preparation of graphene, we con&#64257;rmed its quality
by using STM and LEED. Secondly, we deposited 3 to 25 ML (monolayer) Co on graphene/Pt(111) by electron beam evaporator at low temperature ( 200 K). Then, we measured the ferromagnetic properties of different thickness of Co on graphene / Pt(111) by XMCD, and studied the growth behavior of few monolayer Co on graphene by STM. By serial analysis no ferromagnetic property of few monolayer Co was detected on graphene / Pt(111) by X-ray absorption spectra. The STM image show that the few monolayer Co on graphene mucleates as clusters.
目次 Table of Contents
1 簡介 1
2 原理及性質 3
2.1 石墨烯 (Graphene) 介紹 . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.1 Graphene 的晶格結構 . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 Graphene 的電子能帶結構 . . . . . . . . . . . . . . . . . . . . 4
2.1.3 Graphene 的應用 . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 鐵磁性 (Ferromagnetism) . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 超順磁性 (superparamagnetic) . . . . . . . . . . . . . . . . . . . . . 7
3 實驗儀器、原理與過程 9
3.1 低能量電子繞射儀 (LEED) . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.1 原理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.2 裝置 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 光電子發射顯微鏡 (PEEM) . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 X 射線磁圓偏振二向性 (X-ray magnetic circular dichroism;XMCD) 16
3.4 掃描試穿隧電子顯微鏡 (STM) . . . . . . . . . . . . . . . . . . . . . . 18
3.4.1 電子穿隧效應 . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4.2 成像模式 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4.3 Scanning tunneling spectroscopy (STS) . . . . . . . . . . . . 21
3.4.4 製備 graphene 的過程 . . . . . . . . . . . . . . . . . . . . . . 21
4 實驗結果與討論 23
4.1 Graphene 的製備 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1.1 析出 (segregate) . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1.2 LEED 與 graphene 原子解析圖的對照 . . . . . . . . . . . . . 24
4.1.3 藉由 LEED 判斷 graphene 的特性 . . . . . . . . . . . . . . . 25
4.1.4 藉由 STM 判斷 graphene 的特性 . . . . . . . . . . . . . . . . 30
4.2 討論 Co/graphene 的磁性與結構 . . . . . . . . . . . . . . . . . . . . 38
4.2.1 透過 LEED 圖案確認 grpahene 的成長 . . . . . . . . . . . . . 38
4.2.2 不同厚度下的磁性結果 . . . . . . . . . . . . . . . . . . . . . . 38
4.2.3 磁性與成長模式的關係 . . . . . . . . . . . . . . . . . . . . . . 44
5 結論 51
參考文獻 References
[1] A. K. Geim and K. S. Novoselov. The rise of graphene. NATURE MATERI-
ALS, 6(3):183–191, MAR 2007. ix, 3, 4, 5
[2] C. W. J. Beenakker. Colloquium: Andreev re&#64258;ection and Klein tunneling
in graphene. REVIEWS OF MODERN PHYSICS, 80(4):1337–1354, OCT-DEC
2008. ix, 4, 6
[3] Oleg V. Yazyev. Emergence of magnetism in graphene materials and nanos-
tructures. REPORTS ON PROGRESS IN PHYSICS, 73(5), MAY 2010. ix, 4,
6
[4] Eric Beaurepaire, Herve Bulou, Fabrice Scheurer, and Jean-Paul Kappler.
Magnetism and synchrotron radiation. 2009. ix, 7, 8
[5] H. Luth. Solid surfaces interfaces and thin &#64257;lms. 2001. ix, 10, 11
[6] J. Wang C. Quitmann F. Nolting T. Ramsvik W. Kuch, K. Fukumoto. unpub-
lished result. x, 14, 15
[7] T Funk, A Deb, SJ George, HX Wang, and SP Cramer. X-ray magnetic cir-
cular dichroism - a high energy probe of magnetic properties. COORDINA-
TION CHEMISTRY REVIEWS, 249(1-2):3–30, JAN 2005. x, 16, 17
[8] PK HANSMA and J TERSOFF. SCANNING TUNNELING MICROSCOPY.
JOURNAL OF APPLIED PHYSICS, 61(2):R1–R23, JAN 15 1987. x, 20
[9] JP Pierce, MA Torija, Z Gai, JR Shi, TC Schulthess, GA Farnan, JF Wen-
delken, EW Plummer, and J Shen. Ferromagnetic stability in Fe nanodot
assemblies on Cu(111) induced by indirect coupling through the substrate.
PHYSICAL REVIEW LETTERS, 92(23), JUN 11 2004. xi, 44, 49
[10] JC CHARLIER, X GONZE, and JP MICHENAUD. 1ST-PRINCIPLES STUDY
OF THE ELECTRONIC-PROPERTIES OF GRAPHITE. PHYSICAL REVIEW
B, 43(6):4579–4589, FEB 15 1991. xi, 49, 50
[11] V. M. Karpan, G. Giovannetti, P. A. Khomyakov, M. Talanana, A. A. Starikov,
M. Zwierzycki, J. van den Brink, G. Brocks, and P. J. Kelly. Graphite and
graphene as perfect spin &#64257;lters. PHYSICAL REVIEW LETTERS, 99(17), OCT
26 2007. 1, 4
[12] V. M. Karpan, P. A. Khomyakov, A. A. Starikov, G. Giovannetti, M. Zwierzy-
cki, M. Talanana, G. Brocks, J. van den Brink, and P. J. Kelly. Theoretical
prediction of perfect spin &#64257;ltering at interfaces between close-packed sur-
faces of Ni or Co and graphite or graphene. PHYSICAL REVIEW B, 78(19),
NOV 2008. 1, 4
[13] Wen-Chin Lin, Ya-Yun Huang, Tsung-Ying Ho, and Chih-Hsiung Wang.
Stable canted magnetization in Co thin &#64257;lms on highly oriented pyrolytic
graphite induced by template defects. APPLIED PHYSICS LETTERS, 99(17),
OCT 24 2011. 1
[14] P. K. J. Wong, M. P. de Jong, L. Leonardus, M. H. Siekman, and W. G. van der
Wiel. Growth mechanism and interface magnetic properties of Co nanos-
tructures on graphite. PHYSICAL REVIEW B, 84(5), AUG 5 2011. 1
[15] KS Novoselov, AK Geim, SV Morozov, D Jiang, Y Zhang, SV Dubonos,
IV Grigorieva, and AA Firsov. Electric &#64257;eld effect in atomically thin car-
bon &#64257;lms. SCIENCE, 306(5696):666–669, OCT 22 2004. 3
[16] B. Partoens and F. M. Peeters. From graphene to graphite: Electronic struc-
ture around the K point. PHYSICAL REVIEW B, 74(7), AUG 2006. 4
[17] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim,
and H. L. Stormer. Ultrahigh electron mobility in suspended graphene.
SOLID STATE COMMUNICATIONS, 146(9-10):351–355, JUN 2008. 4
[18] Nikolaos Tombros, Csaba Jozsa, Mihaita Popinciuc, Harry T. Jonkman, and
Bart J. van Wees. Electronic spin transport and spin precession in single
graphene layers at room temperature. NATURE, 448(7153):571–U4, AUG 2
2007. 4
[19] P.Weiss. La variation du ferromagnetisme du temperature. Comptes Rendus,
143:1136, 1906. 6
[20] P. Weiss. Hypothesis of the molecular &#64257;eld and ferromagnetism. J. Phys.,
6:661, 1907. 6
[21] W. Heisenberg. Zur theorie des ferromagnetismus. Z. Phys., 49:619, 1928. 6
[22] Roland Wiesendanger. Scanning Probe Microscopy and Spectroscopy. 1994. 21
[23] Dawn A. Bonnell, editor. scanning probe microscopy and spectroscopy: theory
techniques and applications. 2001. 21
[24] Dawn A. Bonnell, editor. Scanning Tunneling Microscopy and Spectroscopy:
Theory, Techniques and Applications. 1993. 21
[25] S. Hagstrom, H. B. Lyon, and G. A. Somorjai. Surface structures on the clean
platinum (100) surface. Phys. Rev. Lett., 15(11):491–493, September 1965. 23
[26] H. B. Lyon and G. A. Somorjai. Low-energy electron-diffraction study of the
clean (100), (111), and (110) faces of platinum. The Journal of Chemical Physics,
46(7):2539–2550, 1967. 23
[27] JW MAY. PLATINUM SURFACE LEED RINGS. SURFACE SCIENCE,
17(1):267–&, 1969. 23
[28] A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, and P. C. Eklund. Raman scat-
tering from high-frequency phonons in supported n-graphene layer &#64257;lms.
NANO LETTERS, 6(12):2667–2673, DEC 13 2006. 30
[29] P GRUTTER and UT DURIG. SCANNING-TUNNELING-MICROSCOPY
OF CO ON PT(111). JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B,
12(3):1768–1771, MAY-JUN 1994. 1993 International Conference on Scanning
Tunneling Microscopy (STM 93), BEIJING, PEOPLES R CHINA, AUG 09-13,
1993. 30
[30] MA Torija, AP Li, XC Guan, EW Plummer, and J Shen. “Live” surface ferro-
magnetism in Fe nanodots/Cu multilayers on Cu(111). PHYSICAL REVIEW
LETTERS, 95(25), DEC 16 2005. 44
[31] P Gambardella, S Rusponi, M Veronese, SS Dhesi, C Grazioli, A Dallmeyer,
I Cabria, R Zeller, PH Dederichs, K Kern, C Carbone, and H Brune. Giant
magnetic anisotropy of single cobalt atoms and nanoparticles. SCIENCE,
300(5622):1130–1133, MAY 16 2003. 46
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code