Responsive image
博碩士論文 etd-0813117-095448 詳細資訊
Title page for etd-0813117-095448
論文名稱
Title
探討Bcl2L12以及其亞型分子在腦瘤以及乳癌所扮演之功能性角色
Investigation of the functional role of Bcl2L12 and its variant in glioma and breast cancer
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
146
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-27
繳交日期
Date of Submission
2017-09-13
關鍵字
Keywords
Bcl2L12、微小RNA、mRNA標誌、三負性乳癌、Bcl2L12A、惡性腦瘤、乳癌
Triple-Negative Breast Cancer, Glioblastoma multiform, Breast cancer, Bcl2L12A, Bcl2L12, mRNA biomarker, microRNA
統計
Statistics
本論文已被瀏覽 5714 次,被下載 205
The thesis/dissertation has been browsed 5714 times, has been downloaded 205 times.
中文摘要
Bcl2L12調控細胞凋亡,但它在不同癌症的角色一直有著爭議。Bcl2L12在惡性腦瘤(GBM)透過與p53、αB-crystallin、caspase-3以及caspase-7參與後粒線體細胞凋亡的調控。Bcl2L12 被認為會與Bcl-xL交互作用,此外也帶有一個BH3-相似區段。因此,我們調查此一BH3-相似區段與Bcl2L12的抗細胞凋亡特性是否有關;並且ABT-737是否可以與TMZ併用。發現胺基酸192-220 的區域對Bcl2L12-Bcl-xL 之間的交互作用相當重要。在U87MG細胞過表現h1或h2突變蛋白較之野生型蛋白,會使細胞凋亡標記蛋白再活化且也會造細胞色素c釋放。併用ABT-737與TMZ會刺激出更嚴重的細胞凋亡反應。因此,證實的確有一個具功能性的BH3-相似區段,它與抗細胞凋亡特性以及TMZ誘發的細胞自噬作用有關。相對地,Bcl2L12在乳癌是一個良好的預後因子,但背後的因素不明朗。所以我們調查Bcl2L12跟它的亞型分子mRNA表現是否與乳癌的惡化或特定的分類有關。在106不同乳癌檢體中,兩個mRNA分子表現在不同的分期、病理分期的乳癌之間並無差異。 然而,高Bcl2L12 mRNA表現與高病理分期以及三負性乳癌有關。並且,Bcl2L12與它的亞型分子在非三負性乳癌中與淋巴轉移的嚴重程度有關。之後,應用miRanda檢索網站選出可能與Bcl2L12作用的微小RNAs,偵測pri-miR-182 以及pri-miR-1271在乳癌細胞株以及50個檢體的表現。結果pri-miR-182和pri-miR-1271都可以在T47D 以及部份的檢體偵測到。選殖微小RNA的前驅物並與不同的3’UTR片段以及微小RNA結合位突變螢光載體一同轉染到不同的乳癌細胞株。Dual-Glo試驗顯示兩個微小RNAs可能透過結合到3’UTR,都會調降螢光基因的表現;再者,miR-182較之miR-1271對Bcl2L12有較強的調控作用。
Abstract
Bcl2L12 regulates apoptosis, but the different roles of Bcl2L12 in different cancer types remains controversial. In glioma multiforme (GBM), Bcl2L12 is involved in post-mitochondrial apoptosis regulation via the interrelationships between p53, αB-crystallin, and caspase-3 and -7. Bcl2L12 is suspected to interact with Bcl-xL and harbors a BH3-like domain. We investigated whether this BH3-like domain correlates to Bcl2L12’s anti-apoptotic properties, and the implications for the possible combination use of ABT-737 and TMZ in GBM. We found that the region encompassing residues 192-220 is crucial for Bcl2L12-Bcl-xL interaction. Overexpression of either the h1 or h2 mutant in U87MG resulted in reactivation of apoptotic markers and caused cytochrome c release, compared to wild-type protein. Combining ABT-737 with TMZ induced a superior apoptotic event. Thus, a functional BH3-like domain in Bcl2L12 is linked to both its anti-apoptotic properties and TMZ-induced autophagy. In contrast, in breast cancer (BCa) Bcl2L12 is a good prognostic marker, but its mechanistic role is unclear. We therefore examined whether mRNA expression of Bcl2L12 and its variant is associated with BCa progression or a specific BCa subtype. Expression of the two mRNA markers was not significantly different across the different stage, grade and TNM classifications in 106 paraffin-embedded breast cancer specimens of different stages. However, high Bcl2L12 mRNA expression was associated with the high-grade BCa and TNBCs. In addition, the interplay between Bcl2L12 and its variant may be associated with high lymph node metastasis in non-TNBC tumors. We used the miRanda algorithm to investigate Bcl2L12-interacting miRNAs, and measured pri-miR-182 and pri-miR-1271 across different BCa lines in 50 clinical specimens. Both pri-miR-182 and pri-miR-1271 were detected in T47D cells and a proportion of tumor specimens. The precursors of both these miRNAs were cloned and co-transfected with different 3’UTR fragments and miRNA binding mutants into BCa lines. Dual-Glo assay showed that both miRNAs downregulated luciferase expression, which may bind to 3’UTR. In addition, miR-182 was more dominant in regulating Bcl2L12 than miR-1271.
目次 Table of Contents
Table of Contents
誌謝 ii
中文摘要 iii
Abstract iv
List of Figures圖次 ix
List of Tables 表次 xi
Terminology: abbreviations and symbols xii
Chapter 1 1
Research Part I. Role of Bcl2L12 with BH3-like domain in regulating apoptosis and TMZ-induced autophagy: The prospective combination of ABT-737 and TMZ for treating glioma 1
1.1 Summary 1
1.2 Epidemiology of glioblastoma 2
1.3 Etiology of glioblastoma 2
1.4 Clinical treatment of glioma 3
1.5 Bcl2 family protein and apoptosis 5
1.6 Bcl2L12 and cancer 8
1.7 Rationale and objectives 10
1.8 Materials and Methods 11
1.8.1 Cloning 11
1.8.2 Yeast two-hybrid assay 12
1.8.3 Site-directed mutagenesis 13
1.8.4 Protein structure prediction 13
1.8.5 Cell culture, transfection and treatments 13
1.8.6 Quantitative PCR 14
1.8.7 Western blotting 15
1.8.8 Statistical analysis 15
1.9 Results of Research Part I 16
1.9.1 Bcl2L12192-220 is the region responsible for interaction with Bcl-xL 16
1.9.2 The BH3-like domain of Bcl2L12 is located at residue 211-226 19
1.9.3 Hydrophobic residue h1 (L213), h2(L217) and h4 (I224) within the Bcl2L12 BH3-like domain are crucial for Bcl2/Bcl-xL interaction in the yeast two hybrid system 22
1.9.4 Ectopically expressed Bcl2L12 BH3-like domain mutant causes reactivation of apoptotic markers 23
1.9.5 In combination of TMZ and ABT-737 exerts a better apoptotic induction than each used alone in U8MG cell 27
1.10. Discussion of Research Part I 29
Chapter 2 37
Research Part II. Effect of inhibiting Bcl2L12 expression on autophagy via the BH3-like domain in glioma cells- another role of Bcl2L12 in TMZ-induced autophagy 37
2.1. Summary 37
2.2. Introduction of Research Part II 38
2.2.1. A new proposed mechanism for Bcl2L12 as anti-apoptotic Bcl2 protein in glioma 38
2.2.2. Cancer therapy and drug-induced autophagy 38
2.3. Rationale and objectives 40
2.4. Materials and Methods 41
2.4.1. Cloning 41
2.4.2. Yeast two-hybrid assay 42
2.4.3. Site-directed mutagenesis 42
2.4.4. Protein structure prediction 43
2.4.5. Cell culture, transfection and treatments 43
2.4.6. Western blotting 44
2.4.7. Statistical analysis 44
2.5. Results of Research Part II 45
2.5.1. Bcl2L12 retains a BH3-like domain on its α-9 helix and this 12-residue motif is conserved among the Bcl2 family proteins 45
2.5.2. Bcl2L12 did not interact with Beclin-1, but shared similar binding partnerships to Beclin-1 in interaction with Bcl2 and Bcl-xL, but not Mcl-1 46
2.5.3. BH3-like domain L213A mutant restores apoptotic markers activities in U87MG, but not T98G cells 49
2.5.4. Combination use of TMZ and ABT-737 triggered higher apoptosis than either alone in U87MG cells 52
2.5.5. TMZ triggers an autophagy-apoptosis shift event in a time-dependent manner in U87MG and H4, but not in T98G cells 53
2.5.6. GSK3-mediated phosphorylation on Ser156 and BH3-like domain both contribute to the anti-apoptotic property of Bcl2L12 and drug-induced autophagy in U87MG and H4 cells, but not in T98G cells 55
2.5.7. Blocking TMZ-induced autophagy lead to a strong activation of apoptotic markers as well as TP53 expression in U87MG cells. 59
2.6. Discussion of Research Part II 60
Chapter 3 68
Research Part III. Differential roles of Bcl2L12 and its short variant in breast cancer lymph node metastasis 68
3.1. Summary 68
3.2. Breast Cancer 69
3.3. Bcl2L12 and its variant in cancer biology 69
3.4. Rationale and objectives 71
3.5. Materials and Methods 71
3.5.1. Tissue collection 71
3.5.2. RNA extraction 74
3.5.3. cDNA synthesis 74
3.5.4. Quantitative PCR 74
3.5.5. Statistical analysis 78
3.6. Results of Research Part III 78
3.7. Discussion of Research Part III 86
Chapter 4 91
Research Part IV. Investigation of miRNA candidates that possibly regulate the expression of Bcl2L12 in breast cancer 91
4.1. miRNA and cancer 91
4.2. Bcl2L12-interacting miRNA 94
4.3. Rational and Objectives 96
4.4. Materials and Methods 97
4.4.1. Cell culture and tissue collection 97
4.4.2. Target miRNA predictions 97
4.4.3. RNA isolation and cDNA thesis 98
4.4.4. Vector construction 98
4.4.5. Electroporation 99
4.4.6. Luciferase assays 99
4.5. Results of Research Part IV 100
4.6. Discussion of Research Part IV 112
Conclusions 115
References 117
Appendix: Publications Arising from this dissertation 130
參考文獻 References
1. Ohgaki H, Kleihues P. Epidemiology and etiology of gliomas. Acta Neuropathol 2005;109:93-108.
2. Chien LN, Gittleman H, Ostrom QT, et al. Comparative Brain and Central Nervous System Tumor Incidence and Survival between the United States and Taiwan Based on Population-Based Registry. Front Public Health 2016;4:151.
3. Van Meir EG, Hadjipanayis CG, Norden AD, Shu HK, Wen PY, Olson JJ. Exciting new advances in neuro-oncology: the avenue to a cure for malignant glioma. CA Cancer J Clin 2010;60:166-93.
4. Surawicz TS, McCarthy BJ, Kupelian V, Jukich PJ, Bruner JM, Davis FG. Descriptive epidemiology of primary brain and CNS tumors: results from the Central Brain Tumor Registry of the United States, 1990-1994. Neuro Oncol 1999;1:14-25.
5. Stupp R, Mason WP, van den Bent MJ. “Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma”. Oncology Times 2005;27:15-6.
6. Schwartzbaum JA, Fisher JL, Aldape KD, Wrensch M. Epidemiology and molecular pathology of glioma. Nature Clinical Practice Neurology 2006;2:494-503.
7. Padmalatha C, Harruff RC, Ganick D, Hafez GB. Glioblastoma multiforme with tuberous sclerosis. Report of a case. Arch Pathol Lab Med 1980;104:649-50.
8. Grips E, Wentzensen N, Sutter C, et al. Glioblastoma multiforme als Manifestation des Turcot-Syndroms. Der Nervenarzt 2002;73:177-82.
9. Sánchez-Ortiga R, Boix Carreño E, Moreno-Pérez O, Picó Alfonso A. Glioblastoma multiforme y neoplasia endocrina múltiple tipo 2 A. Medicina Clínica 2009;133:196-7.
10. Broekman MLD, Risselada R, Engelen-Lee J, Spliet WGM, Verweij BH. Glioblastoma Multiforme in the Posterior Cranial Fossa in a Patient with Neurofibromatosis Type I. Case Reports in Medicine 2009;2009:1-4.
11. Lam PY, Di Tomaso E, Ng HK, Pang JC, Roussel MF, Hjelm NM. Expression of p19INK4d, CDK4, CDK6 in glioblastoma multiforme. Br J Neurosurg 2000;14:28-32.
12. Cancer Genome Atlas Research N. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 2008;455:1061-8.
13. Nayak A, Ralte AM, Sharma MC, et al. p53 protein alterations in adult astrocytic tumors and oligodendrogliomas. Neurol India 2004;52:228-32.
14. Benson VS, Pirie K, Green J, Casabonne D, Beral V, Million Women Study C. Lifestyle factors and primary glioma and meningioma tumours in the Million Women Study cohort. Br J Cancer 2008;99:185-90.
15. Cobbs CS. Evolving evidence implicates cytomegalovirus as a promoter of malignant glioma pathogenesis. Herpesviridae 2011;2:10.
16. Cobbs CS, Harkins L, Samanta M, et al. Human cytomegalovirus infection and expression in human malignant glioma. Cancer Res 2002;62:3347-50.
17. Wang J, Yao L, Zhao S, et al. Granulocyte-colony stimulating factor promotes proliferation, migration and invasion in glioma cells. Cancer Biology & Therapy 2012;13:389-400.
18. Spinelli V, Chinot O, Cabaniols C, Giorgi R, Alla P, Lehucher-Michel M-P. Occupational and environmental risk factors for brain cancer: a pilot case-control study in France. La Presse Médicale 2010;39:e35-e44.
19. Wrensch M, Minn Y, Chew T, Bondy M, Berger MS. Epidemiology of primary brain tumors: Current concepts and review of the literature. Neuro-Oncology 2002;4:278-99.
20. Schroder R, Bien K, Kott R, Meyers I, Vossing R. The relationship between Ki-67 labeling and mitotic index in gliomas and meningiomas: demonstration of the variability of the intermitotic cycle time. Acta Neuropathol 1991;82:389-94.
21. Karcher S, Steiner HH, Ahmadi R, et al. Different angiogenic phenotypes in primary and secondary glioblastomas. Int J Cancer 2006;118:2182-9.
22. Chang JE, Khuntia D, Robins HI, Mehta MP. Radiotherapy and radiosensitizers in the treatment of glioblastoma multiforme. Clin Adv Hematol Oncol 2007;5:894-902, 7-15.
23. Castro MG, Candolfi M, Kroeger K, et al. Gene therapy and targeted toxins for glioma. Curr Gene Ther 2011;11:155-80.
24. Simpson JR, Horton J, Scott C, et al. Influence of location and extent of surgical resection on survival of patients with glioblastoma multiforme: results of three consecutive Radiation Therapy Oncology Group (RTOG) clinical trials. Int J Radiat Oncol Biol Phys 1993;26:239-44.
25. Mahvash M, Hugo HH, Maslehaty H, Mehdorn HM, Stark AM. Glioblastoma multiforme in children: report of 13 cases and review of the literature. Pediatr Neurol 2011;45:178-80.
26. Kislin KL, McDonough WS, Eschbacher JM, Armstrong BA, Berens ME. NHERF-1: Modulator of Glioblastoma Cell Migration and Invasion. Neoplasia 2009;11:377-IN7.
27. Hegi ME, Diserens A-C, Gorlia T, et al. MGMTGene Silencing and Benefit from Temozolomide in Glioblastoma. New England Journal of Medicine 2005;352:997-1003.
28. Gerstner ER, Batchelor TT. Antiangiogenic Therapy for Glioblastoma. The Cancer Journal 2012;18:45-50.
29. Specenier P. Bevacizumab in glioblastoma multiforme. Expert Review of Anticancer Therapy 2012;12:9-18.
30. Chamberlain. Bevacizumab for the Treatment of Recurrent Glioblastoma. Clinical Medicine Insights: Oncology 2011:117.
31. Rogers AEJ, Le JP, Sather S, et al. Mer receptor tyrosine kinase inhibition impedes glioblastoma multiforme migration and alters cellular morphology. Oncogene 2011;31:4171-81.
32. Guo D, Wang B, Han F, Lei T. RNA interference therapy for glioblastoma. Expert Opinion on Biological Therapy 2010;10:927-36.
33. Li M, Mukasa A, del-Mar Inda M, et al. Guanylate binding protein 1 is a novel effector of EGFR-driven invasion in glioblastoma. The Journal of Experimental Medicine 2011;208:2657-73.
34. Cho D-Y, Yang W-K, Lee H-C, et al. Adjuvant Immunotherapy with Whole-Cell Lysate Dendritic Cells Vaccine for Glioblastoma Multiforme: A Phase II Clinical Trial. World Neurosurgery 2012;77:736-44.
35. Altiok N. Estradiol induces JNK-dependent apoptosis in glioblastoma cells. Oncology Letters 2011.
36. Wang X. The expanding role of mitochondria in apoptosis. Genes Dev 2001;15:2922-33.
37. Ghobrial IM, Witzig TE, Adjei AA. Targeting Apoptosis Pathways in Cancer Therapy. CA: A Cancer Journal for Clinicians 2005;55:178-94.
38. Youle RJ, Strasser A. The BCL-2 protein family: opposing activities that mediate cell death. Nature Reviews Molecular Cell Biology 2008;9:47-59.
39. Yip KW, Reed JC. Bcl-2 family proteins and cancer. Oncogene 2008;27:6398-406.
40. Green DR, Chipuk JE. Apoptosis: Stabbed in the BAX. Nature 2008;455:1047-9.
41. Gibson CJ, Davids MS. BCL-2 Antagonism to Target the Intrinsic Mitochondrial Pathway of Apoptosis. Clin Cancer Res 2015;21:5021-9.
42. Cheng EHYA, Wei MC, Weiler S, et al. BCL-2, BCL-XL Sequester BH3 Domain-Only Molecules Preventing BAX- and BAK-Mediated Mitochondrial Apoptosis. Molecular Cell 2001;8:705-11.
43. Gross A, McDonnell JM, Korsmeyer SJ. BCL-2 family members and the mitochondria in apoptosis. Genes & Development 1999;13:1899-911.
44. Kim H, Rafiuddin-Shah M, Tu H-C, et al. Hierarchical regulation of mitochondrion-dependent apoptosis by BCL-2 subfamilies. Nature Cell Biology 2006;8:1348-58.
45. Wei MC, Lindsten T, Mootha VK, et al. tBID, a membrane-targeted death ligand, oligomerizes BAK to release cytochrome c. Genes Dev 2000;14:2060-71.
46. Wei MC. Proapoptotic BAX and BAK: A Requisite Gateway to Mitochondrial Dysfunction and Death. Science 2001;292:727-30.
47. Willis SN. Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins. Genes & Development 2005;19:1294-305.
48. Walensky LD. Playing FullBAK. Cell Cycle 2013;12:1333-4.
49. Certo M, Moore VDG, Nishino M, et al. Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members. Cancer Cell 2006;9:351-65.
50. Kuwana T, Bouchier-Hayes L, Chipuk JE, et al. BH3 Domains of BH3-Only Proteins Differentially Regulate Bax-Mediated Mitochondrial Membrane Permeabilization Both Directly and Indirectly. Molecular Cell 2005;17:525-35.
51. Letai A, Bassik MC, Walensky LD, Sorcinelli MD, Weiler S, Korsmeyer SJ. Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2002;2:183-92.
52. Kim H, Tu H-C, Ren D, et al. Stepwise Activation of BAX and BAK by tBID, BIM, and PUMA Initiates Mitochondrial Apoptosis. Molecular Cell 2009;36:487-99.
53. Sattler M. Structure of Bcl-xL-Bak Peptide Complex: Recognition Between Regulators of Apoptosis. Science 1997;275:983-6.
54. Walensky LD. BCL-2 in the crosshairs: tipping the balance of life and death. Cell Death and Differentiation 2006;13:1339-50.
55. Scorilas A, Kyriakopoulou L, Yousef GM, Ashworth LK, Kwamie A, Diamandis EP. Molecular Cloning, Physical Mapping, and Expression Analysis of a Novel Gene, BCL2L12, Encoding a Proline-Rich Protein with a Highly Conserved BH2 Domain of the Bcl-2 Family. Genomics 2001;72:217-21.
56. Chou C-H, Chou A-K, Lin C-C, et al. GSK3β regulates Bcl2L12 and Bcl2L12A anti-apoptosis signaling in glioblastoma and is inhibited by LiCl. Cell Cycle 2012;11:532-42.
57. Stegh AH, Brennan C, Mahoney JA, et al. Glioma oncoprotein Bcl2L12 inhibits the p53 tumor suppressor. Genes & Development 2010;24:2194-204.
58. Hong Y, Yang J, Wu W, et al. Knockdown of BCL2L12 leads to cisplatin resistance in MDA-MB-231 breast cancer cells. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 2008;1782:649-57.
59. Thomadaki H, Talieri M, Scorilas A. Prognostic value of the apoptosis related genes BCL2 and BCL2L12 in breast cancer. Cancer Letters 2007;247:48-55.
60. Florou D, Papadopoulos IN, Scorilas A. Molecular analysis and prognostic impact of the novel apoptotic gene BCL2L12 in gastric cancer. Biochemical and Biophysical Research Communications 2010;391:214-8.
61. Fendri A, Kontos CK, Khabir A, Mokdad-Gargouri R, Scorilas A. BCL2L12 is a novel biomarker for the prediction of short-term relapse in nasopharyngeal carcinoma. Mol Med 2011;17:163-71.
62. Stegh AH, DePinho RA. Beyond effector caspase inhibition: Bcl2L12 neutralizes p53 signaling in glioblastoma. Cell Cycle 2011;10:33-8.
63. Furnari FB, Fenton T, Bachoo RM, et al. Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes & Development 2007;21:2683-710.
64. Lin C-J, Lee C-C, Shih Y-L, et al. Resveratrol enhances the therapeutic effect of temozolomide against malignant glioma in vitro and in vivo by inhibiting autophagy. Free Radical Biology and Medicine 2012;52:377-91.
65. Fields S, Song O. A novel genetic system to detect protein-protein interactions. Nature 1989;340:245-6.
66. Chien CT, Bartel PL, Sternglanz R, Fields S. The two-hybrid system: a method to identify and clone genes for proteins that interact with a protein of interest. Proc Natl Acad Sci U S A 1991;88:9578-82.
67. Zhu L. Yeast GAL4 two-hybrid system. A genetic system to identify proteins that interact with a target protein. Methods Mol Biol 1997;63:173-96.
68. Czabotar PE, Lee EF, Thompson GV, Wardak AZ, Fairlie WD, Colman PM. Mutation to Bax beyond the BH3 domain disrupts interactions with pro-survival proteins and promotes apoptosis. J Biol Chem 2011;286:7123-31.
69. Roy A, Xu D, Poisson J, Zhang Y. A protocol for computer-based protein structure and function prediction. J Vis Exp 2011:e3259.
70. Kontos CK, Scorilas A. Molecular cloning of novel alternatively spliced variants of BCL2L12, a new member of the BCL2 gene family, and their expression analysis in cancer cells. Gene 2012;505:153-66.
71. Yachdav G, Kloppmann E, Kajan L, et al. PredictProtein--an open resource for online prediction of protein structural and functional features. Nucleic Acids Research 2014;42:W337-W43.
72. Suzuki M, Youle RJ, Tjandra N. Structure of Bax: coregulation of dimer formation and intracellular localization. Cell 2000;103:645-54.
73. Oltersdorf T, Elmore SW, Shoemaker AR, et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 2005;435:677-81.
74. Petros AM, Medek A, Nettesheim DG, et al. Solution structure of the antiapoptotic protein bcl-2. Proceedings of the National Academy of Sciences 2001;98:3012-7.
75. Bhat V, Olenick MB, Schuchardt BJ, Mikles DC, McDonald CB, Farooq A. Molecular determinants of the binding specificity of BH3 ligands to BclXL apoptotic repressor. Biopolymers 2014;101:573-82.
76. Czabotar PE, Westphal D, Dewson G, et al. Bax crystal structures reveal how BH3 domains activate Bax and nucleate its oligomerization to induce apoptosis. Cell 2013;152:519-31.
77. Wysoczanski P, Mart RJ, Loveridge EJ, et al. NMR Solution Structure of a Photoswitchable Apoptosis Activating Bak Peptide Bound to Bcl-xL. Journal of the American Chemical Society 2012;134:7644-7.
78. Suzuki M, Youle RJ, Tjandra N. Structure of Bax. Cell 2000;103:645-54.
79. Stegh AH, Kim H, Bachoo RM, et al. Bcl2L12 inhibits post-mitochondrial apoptosis signaling in glioblastoma. Genes & Development 2007;21:98-111.
80. Stegh AH, Kesari S, Mahoney JE, et al. Bcl2L12-mediated inhibition of effector caspase-3 and caspase-7 via distinct mechanisms in glioblastoma. Proceedings of the National Academy of Sciences 2008;105:10703-8.
81. Hong YR. False positive: detection and elimination. In: Yeast Hybrid Methods. Natick, MA: Eaton publishing; 2000.
82. Higgins GC, Devenish RJ, Beart PM, Nagley P. Autophagic activity in cortical neurons under acute oxidative stress directly contributes to cell death. Cellular and Molecular Life Sciences 2011;68:3725-40.
83. Simonin K, N’Diaye M, Lheureux S, et al. Platinum compounds sensitize ovarian carcinoma cells to ABT-737 by modulation of the Mcl-1/Noxa axis. Apoptosis 2013;18:492-508.
84. Tzovaras A, Kladi-Skandali A, Michaelidou K, et al. BCL2L12: a promising molecular prognostic biomarker in breast cancer. Clin Biochem 2014;47:257-62.
85. Jensen SA, Day ES, Ko CH, et al. Spherical nucleic acid nanoparticle conjugates as an RNAi-based therapy for glioblastoma. Sci Transl Med 2013;5:209ra152.
86. Yang MC, Loh JK, Li YY, et al. Bcl2L12 with a BH3-like domain in regulating apoptosis and TMZ-induced autophagy: a prospective combination of ABT-737 and TMZ for treating glioma. Int J Oncol 2015;46:1304-16.
87. Blough MD, Beauchamp DC, Westgate MR, Kelly JJ, Cairncross JG. Effect of aberrant p53 function on temozolomide sensitivity of glioma cell lines and brain tumor initiating cells from glioblastoma. J Neurooncol 2011;102:1-7.
88. Srivastava A, Jain A, Jha P, et al. MGMT gene promoter methylation in pediatric glioblastomas. Childs Nerv Syst 2010;26:1613-8.
89. Lin CJ, Lee CC, Shih YL, et al. Inhibition of mitochondria- and endoplasmic reticulum stress-mediated autophagy augments temozolomide-induced apoptosis in glioma cells. PLoS One 2012;7:e38706.
90. Behrends C, Sowa ME, Gygi SP, Harper JW. Network organization of the human autophagy system. Nature 2010;466:68-76.
91. Kang R, Zeh HJ, Lotze MT, Tang D. The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ 2011;18:571-80.
92. Sinha S, Levine B. The autophagy effector Beclin 1: a novel BH3-only protein. Oncogene 2008;27 Suppl 1:S137-48.
93. Adamopoulos PG, Kontos CK, Tsiakanikas P, Scorilas A. Identification of novel alternative splice variants of the BCL2L12 gene in human cancer cells using next-generation sequencing methodology. Cancer Lett 2016;373:119-29.
94. Lomonosova E, Chinnadurai G. BH3-only proteins in apoptosis and beyond: an overview. Oncogene 2008;27 Suppl 1:S2-19.
95. Di Rita A, Strappazzon F. AMBRA1, a Novel BH3-Like Protein: New Insights Into the AMBRA1-BCL2-Family Proteins Relationship. Int Rev Cell Mol Biol 2017;330:85-113.
96. Song DD, Zhang TT, Chen JL, et al. Sphingosine kinase 2 activates autophagy and protects neurons against ischemic injury through interaction with Bcl-2 via its putative BH3 domain. Cell Death Dis 2017;8:e2912.
97. Zeng X, Overmeyer JH, Maltese WA. Functional specificity of the mammalian Beclin-Vps34 PI 3-kinase complex in macroautophagy versus endocytosis and lysosomal enzyme trafficking. J Cell Sci 2006;119:259-70.
98. Liang C, Lee JS, Inn KS, et al. Beclin1-binding UVRAG targets the class C Vps complex to coordinate autophagosome maturation and endocytic trafficking. Nat Cell Biol 2008;10:776-87.
99. Stegh AH, Chin L, Louis DN, DePinho RA. What drives intense apoptosis resistance and propensity for necrosis in glioblastoma? A role for Bcl2L12 as a multifunctional cell death regulator. Cell Cycle 2008;7:2833-9.
100. Kouri FM, Ritner C, Stegh AH. miRNA-182 and the regulation of the glioblastoma phenotype - toward miRNA-based precision therapeutics. Cell Cycle 2015;14:3794-800.
101. Kouri FM, Hurley LA, Daniel WL, et al. miR-182 integrates apoptosis, growth, and differentiation programs in glioblastoma. Genes Dev 2015;29:732-45.
102. van Delft MF, Wei AH, Mason KD, et al. The BH3 mimetic ABT-737 targets selective Bcl-2 proteins and efficiently induces apoptosis via Bak/Bax if Mcl-1 is neutralized. Cancer Cell 2006;10:389-99.
103. Pedro JM, Wei Y, Sica V, et al. BAX and BAK1 are dispensable for ABT-737-induced dissociation of the BCL2-BECN1 complex and autophagy. Autophagy 2015;11:452-9.
104. Anderson BO, Jakesz R. Breast cancer issues in developing countries: an overview of the Breast Health Global Initiative. World journal of surgery 2008;32:2578-85.
105. Leong SP, Shen ZZ, Liu TJ, et al. Is breast cancer the same disease in Asian and Western countries? World journal of surgery 2010;34:2308-24.
106. Foulkes WD, Smith IE, Reis-Filho JS. Triple-negative breast cancer. The New England journal of medicine 2010;363:1938-48.
107. Hong Y, Yang J, Chi Y, et al. BCL2L12A localizes to the cell nucleus and induces growth inhibition through G2/M arrest in CHO cells. Mol Cell Biochem 2010;333:323-30.
108. Lee MT, Ho SM, Tarapore P, Chung I, Leung YK. Estrogen receptor beta isoform 5 confers sensitivity of breast cancer cell lines to chemotherapeutic agent-induced apoptosis through interaction with Bcl2L12. Neoplasia 2013;15:1262-71.
109. Giulietti A, Overbergh L, Valckx D, Decallonne B, Bouillon R, Mathieu C. An overview of real-time quantitative PCR: applications to quantify cytokine gene expression. Methods 2001;25:386-401.
110. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001;25:402-8.
111. Talieri M, Diamandis EP, Katsaros N, Gourgiotis D, Scorilas A. Expression of BCL2L12, a new member of apoptosis-related genes, in breast tumors. Thromb Haemost 2003;89:1081-8.
112. Thomadaki H, Talieri M, Scorilas A. Treatment of MCF-7 cells with taxol and etoposide induces distinct alterations in the expression of apoptosis-related genes BCL2, BCL2L12, BAX, CASPASE-9 and FAS. Biol Chem 2006;387:1081-6.
113. Yang J, Hong Y, Wang W, et al. HSP70 protects BCL2L12 and BCL2L12A from N-terminal ubiquitination-mediated proteasomal degradation. FEBS Lett 2009;583:1409-14.
114. Malin D, Strekalova E, Petrovic V, et al. alphaB-crystallin: a novel regulator of breast cancer metastasis to the brain. Clin Cancer Res 2014;20:56-67.
115. Ambros V. The functions of animal microRNAs. Nature 2004;431:350-5.
116. Esquela-Kerscher A, Slack FJ. Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer 2006;6:259-69.
117. Kim VN. MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 2005;6:376-85.
118. Garzon R, Marcucci G, Croce CM. Targeting microRNAs in cancer: rationale, strategies and challenges. Nat Rev Drug Discov 2010;9:775-89.
119. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009;136:215-33.
120. Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A. Identification of mammalian microRNA host genes and transcription units. Genome Res 2004;14:1902-10.
121. Lee Y, Kim M, Han J, et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J 2004;23:4051-60.
122. Lee Y, Ahn C, Han J, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 2003;425:415-9.
123. Landthaler M, Yalcin A, Tuschl T. The human DiGeorge syndrome critical region gene 8 and Its D. melanogaster homolog are required for miRNA biogenesis. Curr Biol 2004;14:2162-7.
124. Bohnsack MT, Czaplinski K, Gorlich D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 2004;10:185-91.
125. Hammond SM, Bernstein E, Beach D, Hannon GJ. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 2000;404:293-6.
126. Chendrimada TP, Gregory RI, Kumaraswamy E, et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 2005;436:740-4.
127. Hutvagner G, Zamore PD. A microRNA in a multiple-turnover RNAi enzyme complex. Science 2002;297:2056-60.
128. Stark A, Lin MF, Kheradpour P, et al. Discovery of functional elements in 12 Drosophila genomes using evolutionary signatures. Nature 2007;450:219-32.
129. Orom UA, Nielsen FC, Lund AH. MicroRNA-10a binds the 5'UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell 2008;30:460-71.
130. Eiring AM, Harb JG, Neviani P, et al. miR-328 functions as an RNA decoy to modulate hnRNP E2 regulation of mRNA translation in leukemic blasts. Cell 2010;140:652-65.
131. Beitzinger M, Meister G. Preview. MicroRNAs: from decay to decoy. Cell 2010;140:612-4.
132. Khraiwesh B, Arif MA, Seumel GI, et al. Transcriptional control of gene expression by microRNAs. Cell 2010;140:111-22.
133. Gonzalez S, Pisano DG, Serrano M. Mechanistic principles of chromatin remodeling guided by siRNAs and miRNAs. Cell Cycle 2008;7:2601-8.
134. Kim DH, Saetrom P, Snove O, Jr., Rossi JJ. MicroRNA-directed transcriptional gene silencing in mammalian cells. Proc Natl Acad Sci U S A 2008;105:16230-5.
135. Lee SH, Choi EH, Cha MJ, Hwang KC. Implications of MicroRNAs in the Vascular Homeostasis and Remodeling. In: Sakuma K, ed. Muscle Cell and Tissue: InTech; 2015.
136. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB. Prediction of mammalian microRNA targets. Cell 2003;115:787-98.
137. Krek A, Grun D, Poy MN, et al. Combinatorial microRNA target predictions. Nat Genet 2005;37:495-500.
138. Betel D, Wilson M, Gabow A, Marks DS, Sander C. The microRNA.org resource: targets and expression. Nucleic Acids Res 2008;36:D149-53.
139. Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 2009;19:92-105.
140. Ivanovska I, Cleary MA. Combinatorial microRNAs: working together to make a difference. Cell Cycle 2008;7:3137-42.
141. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004;116:281-97.
142. Alvarez-Garcia I, Miska EA. MicroRNA functions in animal development and human disease. Development 2005;132:4653-62.
143. Stefani G, Slack FJ. Small non-coding RNAs in animal development. Nat Rev Mol Cell Biol 2008;9:219-30.
144. Calin GA, Sevignani C, Dumitru CD, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A 2004;101:2999-3004.
145. Lu J, Getz G, Miska EA, et al. MicroRNA expression profiles classify human cancers. Nature 2005;435:834-8.
146. Volinia S, Calin GA, Liu CG, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 2006;103:2257-61.
147. Gartner JJ, Parker SC, Prickett TD, et al. Whole-genome sequencing identifies a recurrent functional synonymous mutation in melanoma. Proc Natl Acad Sci U S A 2013;110:13481-6.
148. Xu S, Witmer PD, Lumayag S, Kovacs B, Valle D. MicroRNA (miRNA) transcriptome of mouse retina and identification of a sensory organ-specific miRNA cluster. J Biol Chem 2007;282:25053-66.
149. Jin ZB, Hirokawa G, Gui L, et al. Targeted deletion of miR-182, an abundant retinal microRNA. Mol Vis 2009;15:523-33.
150. Sacheli R, Nguyen L, Borgs L, et al. Expression patterns of miR-96, miR-182 and miR-183 in the development inner ear. Gene Expr Patterns 2009;9:364-70.
151. Segura MF, Hanniford D, Menendez S, et al. Aberrant miR-182 expression promotes melanoma metastasis by repressing FOXO3 and microphthalmia-associated transcription factor. Proc Natl Acad Sci U S A 2009;106:1814-9.
152. Jiang L, Mao P, Song L, et al. miR-182 as a prognostic marker for glioma progression and patient survival. Am J Pathol 2010;177:29-38.
153. Mihelich BL, Khramtsova EA, Arva N, et al. miR-183-96-182 cluster is overexpressed in prostate tissue and regulates zinc homeostasis in prostate cells. J Biol Chem 2011;286:44503-11.
154. Liu Z, Liu J, Segura MF, et al. MiR-182 overexpression in tumourigenesis of high-grade serous ovarian carcinoma. J Pathol 2012;228:204-15.
155. Weeraratne SD, Amani V, Teider N, et al. Pleiotropic effects of miR-183~96~182 converge to regulate cell survival, proliferation and migration in medulloblastoma. Acta Neuropathol 2012;123:539-52.
156. Wang J, Li J, Shen J, Wang C, Yang L, Zhang X. MicroRNA-182 downregulates metastasis suppressor 1 and contributes to metastasis of hepatocellular carcinoma. BMC Cancer 2012;12:227.
157. Liu H, Du L, Wen Z, et al. Up-regulation of miR-182 expression in colorectal cancer tissues and its prognostic value. Int J Colorectal Dis 2013;28:697-703.
158. Yang MH, Yu J, Jiang DM, Li WL, Wang S, Ding YQ. microRNA-182 targets special AT-rich sequence-binding protein 2 to promote colorectal cancer proliferation and metastasis. J Transl Med 2014;12:109.
159. Zhang Y, Wang X, Wang Z, Tang H, Fan H, Guo Q. miR-182 promotes cell growth and invasion by targeting forkhead box F2 transcription factor in colorectal cancer. Oncol Rep 2015;33:2592-8.
160. Guttilla IK, White BA. Coordinate regulation of FOXO1 by miR-27a, miR-96, and miR-182 in breast cancer cells. J Biol Chem 2009;284:23204-16.
161. Moskwa P, Buffa FM, Pan Y, et al. miR-182-mediated downregulation of BRCA1 impacts DNA repair and sensitivity to PARP inhibitors. Mol Cell 2011;41:210-20.
162. Krishnan K, Steptoe AL, Martin HC, et al. MicroRNA-182-5p targets a network of genes involved in DNA repair. RNA 2013;19:230-42.
163. Lei R, Tang J, Zhuang X, et al. Suppression of MIM by microRNA-182 activates RhoA and promotes breast cancer metastasis. Oncogene 2014;33:1287-96.
164. Yu J, Shen W, Gao B, Zhao H, Xu J, Gong B. MicroRNA-182 targets FOXF2 to promote the development of triple-negative breast cancer. Neoplasma 2017;64:209-15.
165. Chiang CH, Hou MF, Hung WC. Up-regulation of miR-182 by beta-catenin in breast cancer increases tumorigenicity and invasiveness by targeting the matrix metalloproteinase inhibitor RECK. Biochim Biophys Acta 2013;1830:3067-76.
166. Jeon TI, Esquejo RM, Roqueta-Rivera M, et al. An SREBP-responsive microRNA operon contributes to a regulatory loop for intracellular lipid homeostasis. Cell Metab 2013;18:51-61.
167. Li L, Sarver AL, Khatri R, et al. Sequential expression of miR-182 and miR-503 cooperatively targets FBXW7, contributing to the malignant transformation of colon adenoma to adenocarcinoma. J Pathol 2014;234:488-501.
168. Chiang CH, Chu PY, Hou MF, Hung WC. MiR-182 promotes proliferation and invasion and elevates the HIF-1alpha-VEGF-A axis in breast cancer cells by targeting FBXW7. Am J Cancer Res 2016;6:1785-98.
169. Tong Z, Liu N, Lin L, Guo X, Yang D, Zhang Q. miR-125a-5p inhibits cell proliferation and induces apoptosis in colon cancer via targeting BCL2, BCL2L12 and MCL1. Biomed Pharmacother 2015;75:129-36.
170. Lu W, Huang SY, Su L, Zhao BX, Miao JY. Long Noncoding RNA LOC100129973 Suppresses Apoptosis by Targeting miR-4707-5p and miR-4767 in Vascular Endothelial Cells. Sci Rep 2016;6:21620.
171. Gong J, Wang ZX, Liu ZY. miRNA1271 inhibits cell proliferation in neuroglioma by targeting fibronectin 1. Mol Med Rep 2017;16:143-50.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code