Responsive image
博碩士論文 etd-0813117-113939 詳細資訊
Title page for etd-0813117-113939
論文名稱
Title
乳化液性質對乳化液潤滑性能之影響研究
Study on Effect of Emulsion Properties on Lubricating Performance of Emulsions
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
86
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-20
繳交日期
Date of Submission
2017-09-13
關鍵字
Keywords
熱彈液動潤滑、吸附油層、乳化液、滾滑比、熱傳導
emulsion, adsorbed layer, thermal conductivity, TEHL, slide/roll ratio
統計
Statistics
本論文已被瀏覽 5673 次,被下載 15
The thesis/dissertation has been browsed 5673 times, has been downloaded 15 times.
中文摘要
本研究使用一含兩吸附油層及乳化液層之混合油膜模型進行一系列模擬分析,提出一演算法解決各界面間之熱傳問題,簡化熱彈液動潤滑模型以節省計算時間,此模型能在減少大量且繁複的推導之下,有效模擬乳化液之潤滑狀況。本研究旨在探討乳化液性質對潤滑性能之影響,利用此吸附油層厚度及各種操作條件探討滑動條件下熱彈液動潤滑行為,了解其在接觸區之溫昇與潤滑特性,首先探討油相濃度、基礎油種類、乳化劑濃度及其酸鹼值對起始吸附油層的厚度的影響,與現有實驗量測值比較,並提出一簡化公式估算吸附油層厚度。起始吸附油層厚度隨油相濃度和基礎油黏度增加而增加,隨酸鹼值與乳化劑濃度增加而減少,因為低酸鹼值與低乳化劑濃度乳化液使乳化液不穩定,易在金屬表面形成吸附油層,然而隨轉速增加二者之起始吸附層厚度差異變小。基礎油種類顯著影響吸附油層厚度,合成油SHF41濕潤能力最差使得其起始吸附油層厚度最低。當上下固體表面之轉速不同時,滑動主要發生在乳化液層而吸附油層則只有微小滑動,乳化液層也因此承受黏性剪力作用而產熱,故最大溫昇發生在乳化液層。速度較快的固體表面與其吸附油層之溫昇較小,因為其在接觸區吸收熱量時間較短所致。最大平均溫昇隨著滾滑比、平均轉速、負荷油相濃度與基礎油黏度增加而昇高,較厚之吸附油層具有較高之平均溫昇,此乃由於吸附油層具有可阻止熱量散失之能力。最小油膜厚度隨負荷及滾滑比增加而減少,但會隨油相濃度、基礎油黏度與平均轉速增加而增加。
Abstract
A mixed-film model with two adsorbed oil layers on the solid surfaces and an emulsion layer between them is proposed to conduct simulation. An algorithm is also proposed to solve the heat transfer problem between the interfaces along them. A model for the thermal elastohydrodynamic lubrication (TEHL) is simplified to save the computing time and to investigate the effects of emulsion parameters and operating conditions on the lubrication performances. The effects of oil phase concentration, base oil type, emulsifier concentration and pH value on the thickness of the initial adsorbed oil layer are investigated. Compared with the existing experimental measurements, a simplified formula is proposed to estimate the thickness of the adsorbed oil layer. The initial adsorbed oil layer thickness increases with the oil concentration and the viscosity of the base oil, but decreases with the increase of the pH value and the emulsifier concentration because the low pH value and the low emulsifier concentration emulsion make the emulsion unstable, so that it is easy to form the adsorbed oil layer on the solid surface. However, the effects of oil phase concentration, base oil type, emulsifier concentration and pH value on the thickness of the adsorbed oil layer become smaller with increasing speed. The base oil species significantly affect the thickness of the adsorbed oil layer, and the wetting ability of the synthetic oil SHF41 is the worst. When the upper and lower solids have different speeds, the sliding occurs mainly in the emulsion layer, and the adsorbed oil layer is only slightly sliding. The emulsion layer is subjected to viscous shear force to generate heat, so the maximum temperature rise occurs in the emulsion layer. The temperatures of the faster solid surface and its adsorbed oil layer are smaller because the surface absorbs heat in the contact zone for a relatively short time. The maximum average temperature rise increases with increasing oil concentration, base oil viscosity, rolling ratio, average speed and load, and the thicker adsorbed oil layer has a higher average temperature rise, which is due to the ability of the adsorbed oil layer to prevent heat dissipation. The minimum oil film thickness decreases with increasing load and roll ratio, but increases with oil concentration, base oil viscosity and average speed increase.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘 要 iii
Abstract iv
目 錄 vi
圖 次 vii
表 次 ix
符號說明 x
第一章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.3 論文架構 8
第二章 理論模型 13
2.1 統御方程式 13
2.2 簡化之統御方程式 22
2.3 以新的演算法求解表面溫度及界面溫度 26
2.6計算方法與流程 28
第三章 結果與討論 30
3.1 新演算法對表面及界面溫昇之影響 30
3.2 簡化模型與原模型之比較 37
3.3乳化液性質對起始吸附層厚度之影響 41
3.4操作參數對乳化液潤滑特性之影響 51
3.5基礎油黏度效應 64
第四章 結論與未來展望 66
4.1 結論 66
4.2 未來展望 67
參考文獻 68
參考文獻 References
[1] T. B. Lane and J. R. Hughes, A study of the oil-film formation in gears by electrical resistance measurements. Br. J. Appl. Phys.1952,vol 3: pp. 315-318
[2] L. B. Sibley and F. K. Orcutt, Elasto-Hydrodynamic Lubrication of Rolling-Contact Surfaces.,ASLETrans.1961. vol 4. Iss2
[3] M. T. KIRK, Hydrodynamic Lubrication of ‘Perspex’, Nature,1962. 194: pp. 965–966.
[4] G. J. Johnston, R. Wayte and H. A. Spikes, The Measurement and Study of Very Thin Lubricant Films in Concentrated Contacts, Tribology Trans. 1992. vol 34. 2:pp. 187–194.
[5] Kimura, Y. and Okada, K., “Film Thickness at Elastohydrodynamic Conjunctions Lubricated with Oil-in-Water Emulsions”, Proc. I. Mech. E, Vol. C176, (1987) 85-90.
[6] 陳世樺,水中滴油型乳化液油膜形成光學干涉研究(1999)
[7] M. Ratoi , H. Spikes and R. Hoogendoorn, The design of lubrication oil-in-water emulations. .Proc.Instn.Mech.Engrs, 1997. 211: p. 195-208.
[8] D. Zhu, G. Biresaw, S. J. Clark, and T. J. Kasun, Elastohydrodynamic lubrication with O/W emulsions. Trans. ASME, J. Triboligy, 1994. 116: p. 310-319.
[9] A. Cambiella, J. M. Benito, C. Pazos, J. Coca, M. Ratoi-salagean, and H. A. Spikes, The effect of emulsifier concentration on lubricating properties of oil-in-water emulsions. Tribol. Letters, 2006. 22: p. 53-65.
[10] Y. Sakaguchi, W. R. D. Wilson, and S. R. Schmid, A dynamic concentration model for lubrication with oil-in-water emulsions. Wear, 1993. 161: p. 207-212.
[11] Dow, T. A., 1977, "A Rheology Model for Oil-in-Water," SME Technical Paper No. MS77-339.
[12] A. Al-Sharif, K. Chamniprasart, K. R. Rajagopal, and A. Z. Szeri, Lubrication with Binary Mixtures:Liquid-Liquid Emulsion. ASME J. Tribol., 1993. 115: p. 46-55.
[13] R. J. Atkin and R. E. Craine, Continuum theories of mixtures: basic theory and historical development. Quarterly Journal of Mechanics and Applied Mathematics, 1976. 29: p. 209.
[14] R. J. Atkin and R. E. Craine, Continuum theories of mixtures: applications. Journal of the Institute of Mathematical Applications, 1976. 17: p. 153-207.
[15] S. H. Wang, A. Al-Sharif, K. R. Rajagopal, and A. Z. Szeri, Lubrication with Binary Mixtures:Liquid-Liquid Emulsion in an EHL Conjunction. ASME J. Tribol., 1993. 115: p. 515-522.
[16] S. R. Schmid and W. R. D. Wilson, Lubrication mechanisms for oil-in-water emulsions. STLE, 1995. 52: p. 168-175.
[17] S.H. Wang, A.Z. Szeri and K.R. Rajagopal, Lubrication with emulsions in cold rolling. J Tribology, 1993. 115: p. 523-531.
[18] A.Z. Szeri and S.H. Wang, An elasto-plasto-hydrodynamic model of strip rolling with oil/water emulsion lubricant. Tribol., 2004. 37: p. 169-176.
[19] J. Benner, Sadeghi, Hoeprich R., and C. Frank, Lubricating Properties of Water in Oil Emulsions. J. Tribol., 2006. 128: p. 296-310.
[20] S. Yan and S. Kuroda, Lubrication with Emulsion:First Report, the Extended Reynolds Equation. Wear, 1997: p. 230-237.
[21] S. Yan and S. Kuroda, Lubrication with Emulsion II. The Viscosity Coefficients of Emulsions. Wear, 1997. 206: p. 238-243.
[22] S.W. Lo, K. C. Huang, and M. C. Zhou, CFD Study on Oil-in-Water Emulsions. STLE Tribol. Trans., 2009. 52: p. 66-72.
[23] S.W. Lo, T. C. Yang, Y. A. Cian, and K. C. Huang, A Model for Lubrication by Oil-in-Water Emulsions. ASME, J. Tribol., 2010. 132: p. 011801-1-011801-9.
[24] R. T. Lee, K. T. Yang, and Y. C. Chiou, A novel model for a mixed-film lubrication with oil-in-water emulsions. Tribology International 2013. 66: p. 241-248.
[25] Winner,W.O., Temperature Effects in Elastohydrodynamically Lubricated Contacts. Tribology in the 80's. NASA CP-2300. 1983. 2: pp. 533-543
[26] B. Sternlicht, P. Lewis, and P. Flynn, Theory of lubrication and failure of rolling contacts, ASME J. Basic Erg., 83 (1961) :pp.213-226.
[27] H.S. Cheng, A refined solution to the thermal elastohydrodynamic lubrication of rolling sliding cylinders, Trans. ASLE, 8 (4) (1965) 397-410.
[28] M.K. Ghosh and B.J. Hamrock, Thermal elastohydrodynamic lubrication of line contacts, Trans. ASLE, 28 (2) (1985) 159-171
[29] C. H. Hsu and R. T. Lee, An Efficient Algorithm for Thermal Elastohydrodynamic Lubrication Under Rolling/Sliding Line Contacts. J. Tribol., 1994. 116: p. 762-769.
[30] R. T. Lee and C. H. Hsu, A fast method for the analysis of thermal-elastohydrodynamic lubrication of rolling/sliding line contacts. Wear, 1993. 166: p. 107-117.
[31] R. T. Lee and C. H. Hsu, Advanced multilevel solution for thermal-elastohydrodynamic lubrication of simple sliding line contacts. Wear, 1994. 171: p. 227-237.
[32] C. C. Liao, Thermal Effect on a Mixed-Film Lubrication with Oil-in-Water Emulsions .(2014)
[33] K. T. Yang, Effects of Adsorbed Films on Two Contact Surfaces on Lubricating Characteristics of Emulsions.(2016)
[34] H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solid. 1959, Oxford: Oxford University Press.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code