Responsive image
博碩士論文 etd-0814102-110227 詳細資訊
Title page for etd-0814102-110227
論文名稱
Title
配電網路模型與電容器應用之研究
Distribution Network Modeling and Capacitor Placement Application
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
103
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2002-06-27
繳交日期
Date of Submission
2002-08-14
關鍵字
Keywords
電流注入法、導納矩陣、阻抗矩陣、相解耦、次相解耦、電容器應用
Capacitor Placement Application, Phase-Decoupled, Sub-Phase-Decoupl, Y-Matrix, Z-Matrix, Current Injection Method
統計
Statistics
本論文已被瀏覽 5748 次,被下載 0
The thesis/dissertation has been browsed 5748 times, has been downloaded 0 times.
中文摘要
配電系統用電品質的提升是電力系統研究上的重要課題,從事這方面的研究,需要以精確的網路模型與優異的模擬分析工具為基礎,而系統模型的建立更是一切之關鍵。本論文首先針對傳統導納(Y)矩陣與阻抗(Z)矩陣的建置方式作研究,發展出導納矩陣以相為基準之建立方式,再利用配電系統饋線互感導納值小於自感導納值及r/x比值大之特性,配合電流注入模型和直角座標表示法,推導出相解耦(PD)及次相解耦(SPD)電流注入法負載潮流,作為研究分析之基礎。再者,提出新的Z矩陣建置方式,可將完整之Z矩陣分解為二子矩陣,分別為上三角矩陣與下三角矩陣,代表饋線電流與匯流排注入電流,及匯流排電壓與饋線電流間之關係。
電容器配置之應用對用電品質提升具有良好之效益,本論文亦根據電流注入法負載潮流模型為基礎,考量配電系統三相不平衡及相間互耦效應,依序推導出電容器補償量對應電壓變化、饋線電流變化及饋線損失降低量之線性關係,再從電容器補償獲得損失減少之效益角度,定義線性最佳化數學式,應用於求解電容器配置應用問題。由測試結果,驗證所提上述方法非常適合配電不平衡系統之研究。
Abstract
Enhancing the quality of services in the distribution system is an important topic for power system research. It is imperative to employ precise network modeling and effective simulation tools, and a good system model is the key. This dissertation starts with modifying the building algorithms of Y-admittance and Z-impedance matrices. The Y-matrix will be built according to phase sequences. With the facts that the line self-impedance is significantly greater than the mutual-coupling terms and the existence of a high r/x ratio in distribution, two decoupled load flow methods (Phase-Decoupled、PD and Sub-Phase-Decoupled、SPD) with Current Injection Model(CIM) were developed. A new Z-matrix building algorithm was also developed in this dissertation. It decomposed the traditional Z into two sub-matrices, the upper and lower triangular matrices respectively. The matrices represent the relationships between the branch current and the bus injection current, and between the bus voltage and the branch current.
Enhancing the quality of services will be effectively achieved by a proper capacitor placement technique. This dissertation develops a linear relationships of voltage changes versus the capacitor compensation, the branch current changes versus the capacitor compensation, and loss reductions versus the capacitor compensation. For loss reduction, a linear optimization function was defined to solve the capacitor placement problem. Tests have shown that the proposed methods were suitable for applications to an unbalance distribution system.
目次 Table of Contents
中文摘要 I
英文摘要 II
目錄 III
圖目錄 VI
表目錄 VII

第一章 緒論 1
1-1 研究背景及動機 1
1-2 本論文主要貢獻 4
1-3 論文架構概述 5

第二章 卡迪生平面配電導納矩陣模型 7
2-1 配電饋線模型 7
2-2 三相變壓器模型 12
2-3 汽電共生系統模型 19
2-4 三相電容器模型 21
2-5 負載模型 22
2-6 導納矩陣程式化建構流程 22

第三章 配電阻抗矩陣模型 27
3-1阻抗矩陣元素 28
3-2 建置阻抗矩陣方法 28
3-2-1 傳統建置阻抗矩陣方法 28
3-2-2 利用導納矩陣求阻抗矩陣 29
3-3 新建置阻抗矩陣方法 30
3-3-1 擴充樹與非擴充樹集合 30
3-3-2 擴充樹集合之ZVB及IB矩陣推導 32
3-3-3 非擴充樹集合之 ZVB及IB 矩陣推導 35
3-3-4 整體網路系統阻抗矩陣推導 37

第四章 電流注入法負載潮流應用 39
4-1 電流注入亞可比矩陣推導 39
4-1-1 極座標系 39
4-1-2 卡迪生座標系 42
4-2 以相為基準之亞可比矩陣 44
4-3 電流注入法相解耦與次相解耦負載潮流 46

第五章 電容器調整與饋線損失分析 49
5-1 電容器調整與饋線損失 49
5-1-1 三相平衡配電饋線探討 49
5-1-2 三相不平衡配電饋線探討 51
5-2 電容器調整與匯流排電壓變化 54
5-3 電容器調整與饋線電流變化 55
5-4 電容器調整與饋線總損失變化 58

第六章 饋線電容器最佳配置規劃 61
6-1 電容器規劃目標 63
6-2 電容器規劃限制 64
6-2-1 電容器不連續函數限制 64
6-2-2 匯流排電壓限制 65
6-3 整數規劃最佳化模式 66

第七章 測試模擬與結果 68
7-1 阻抗矩陣建置方法測試 68
7-1-1 小系統建置流程示範 68
7-1-2 特性測試 70
7-2 解耦負載潮流測試 72
7-2-1 測試系統與測試方法 72
7-2-2 特性測試 76
7-3 整數規劃電容器配置最佳化測試 81
7-3-1 測試系統 81
7-3-2 測試結果 85

第八章 結論及未來發展方向 88
8-1 結論 88
8-2 未來發展方向 89

參考文獻 91
附錄 98
參考文獻 References
[1] 盧展南等, “配電自動化系統之控制架構研究”台電工程月刊, pp.54-73, 1998.
[2] 金鴻展, “配電系統運轉與復電的饋線開關操作策略”, 國立中山大學電機工程研究所博士論文, 1999.
[3] D. Trudeau, R. Hoffman, and M.A. Seymour, “Integrating Am/Fm Maps with Distribution SCADA,” IEEE Transactions on Power Delivery, Vol. 5, No. 2, pp. 1216-1221, 1990.
[4] W.M. Lin, M.T. Tsay, and S.W. Wu, “Application of Geographic Information System to Distribution Information Support,” IEEE Transactions on Power Systems, Vol. 11, No. 1, pp. 190-197, 1996.
[5] M.L. Chan and W.H. Crouch, “An Integrated Load Management, Distribution Automation And Distribution Electric SCADA System,” IEEE Transactions on Power Delivery, Vol. 5, No. 1, pp. 384-390, 1989.
[6] “IEEE Tutorial Course on Distribution Automation,” IEEE Power Engineering Society, 88 EH0280-8 PWR.
[7] 余俊仲, “配電系統饋線損失的降低與模糊演算法之應用”, 國立中山大學電機工程研究所碩士論文, 1996.
[8] W.L. Peterson, E.B. Makram, and T.L. Bakdwin, “A Generalized PC Based Bus Impedance Matrix Building Algorithm,” IEEE Proceedings Energy and Information Technologies, Southeastcon ’89, Vol. 2, pp. 432-436, 1989.
[9] W.L. Peterson and E.B. Makram, “A Z-Matrix Building Algorithm for Unbalanced Power Systems with Mutually Coupled Lines,” IEEE Proceedings of the 1989 System Theory, Twenty-First Southeastern Symposium, pp. 9-12.
[10] Carson John R. “Wave Propagation in Overhead Wires with Ground Return,” Bell System Technical Journal, New York, Vol. 5, 1926.
[11] T.H. Chen, M.S. Chen, T. Inoue, and E.A. Chebli, “Three-Phase Cogenerator and Transformer Models for Distribution System Analysis,” IEEE Transactions on Power Delivery, Vol. 6, No. 4, pp. 1671-1681, Oct. 1991.
[12] R.D. Zimmerman and H.D. Chiang, “Fast Decoupled Power Flow for Unbalanced Radial Distribution Systems,” IEEE Transactions on Power Systems, Vol. 10, No. 4, pp.2045-2052, Nov. 1995.
[13] H.E. Brown(1967),” Short Circuit Studies of Large Systems by the Impedance Matrix Method,” Proceedings IEEE PICA Conference, Pittsburgh PA, pp. 335-342
[14] H.E. Brown(1985), Solution of Large Networks by Matrix Methods, New York :John Wiley and Sons.
[15] E.B. Makram, K.P. Thorton, and H.E. Brown, “Selection of Lines to Be Switched to Eliminate Overloaded Lines Using a Z-Matrix Method,” IEEE Transactions On Power System, Vol. 4, No. 2, pp. 653-661, May 1989.
[16] J.D. Glover and M. Sarma(1994), Power System Analysis and Design, PWS Publishing Company 2nd.
[17] J.J. Grainger and W.D. Stevenson(1994), Power System Analysis, McGraw-Hill International Editions Heydt.
[18] R. Bergen and V. Vittal(2000), Power Systems Analysis, Prentice-Hall, Inc..
[19] C.N. Lu, J.H. Teng, and W.M. Lin, “Distribution System State Estimation,” IEEE Transactions on Power Systems, Vol. 10, No. 1, pp. 229-240, 1995.
[20] M.E. Baran, “State Estimation for Real-Time Monitoring of Distribution Systems,” IEEE Transactions on Power Systems, Vol. 9, No. 3, pp.1601-1609, Aug. 1994.
[21] M.E. Baran and A.W. Kelley, “A Branch-Current-Based State Estimation Method for Distribution Systems,” IEEE Transactions on Power Systems, Vol. 10, No. 1, 483-491, 1995.
[22] J.H. Teng and W.M. Lin, “Current-Based Power Solutions for Distribution Systems,” IEEE ICPST '94 Beijing, China, pp. 414-418, 1994.
[23] W.M. Lin and J.H. Teng, “Phase-Decoupled Load Flow Method for Radial and Weakly-Meshed Distribution Networks,” IEE Proc.-Generation, Transmission and Distribution, Vol. 143, No. 1, pp. 39-42, Jan. 1996.
[24] W.M. Lin, Y.S. Su, H.C. Chin, and J.H. Teng, “Three-Phase Unbalance Distribution Power Flow Solutions with Minimum Data Preparation”, IEEE Transactions on Power Systems, Vol. 14, No. 3, pp. 1178-1183, Aug. 1999.
[25] T.H. Chen and Y.L. Chang, “Integrated Models of Distribution Transformers and Their Loads for Three-Phase Power Flow Analysis,” IEEE Transactions on Power Delivery, Vol. 11, No. 1, pp. 507-513, 1996.
[26] B.K. Chen and B.S. Guo, “Three Phase Models of Specially Connected Transformers,” IEEE Transactions on Power Delivery, Vol. 11, No. 1, pp. 323-330, 1996.
[27] J.V. Schmill, “Optimum Size and Location of Shunt Capacitors on distribution feeders", IEEE Transactions on Power Apparatus and Systems, Vol. PAS-84, No. 9, September 1965, pp. 825-832.
[28] S.H. Lee and J.J. Grainger, “Optimum placement of fixed and switched capacitors on primary distribution feeders,” IEEE Transactions on Power Apparatus and Systems, Vol. 100, No.1, pp. 345-352, Jan. 1981.
[29] J.J. Grainger and S.H. Lee, “Optimum Size and Location of Shunt Capacitors for Reduction of Losses on Distribution Feeders,” IEEE Transactions on Power Apparatus and Systems ,Vol. 100, No. 3, pp. 1105-1118, Mar. 1981.
[30] M.M.A. Salama, A.Y. Chikhani, and R. Hackarn, “Control of Reactive Power in Distribution Systems with an End-load and Fixed Load Conditions,” IEEE Transactions on Power Apparatus and Systems, Vol. 104, No. 10, pp. 2779-2788, Oct. 1985.
[31] M.M.A. Salama, E.A.A. Mansour, A.Y. Chikhani, and R. Hackam, “Control of Reactive Power in Distribution Systems with an End-load and Varying Load Conditions,” IEEE Transactions on Power Apparatus and Systems, Vol. 104, No. 4, pp. 941-947, Apr. 1985.
[32] H. Duran, “Optimum Number, Location, and Size of Shunt Capacitors in Radial Distribution Feeders - a Dynamic Programming Approach,” IEEE Transactions on Power Apparatus and Systems, Vol. PAS-87, No. 9, pp. 1769-1774, Sept. 1968.
[33] M.K. Mangoli, K.Y. Lee, and Y.M. Park, “Optimal Real and Reactive Power Control Using Linear Programming,” Electric Power Systems Research, Vol. 26, No. 1, pp. 1-10, Jan. 1993.
[34] S. Ertem and J.R. Tudor, “Optimum Shunt Capacitor Allocation by Nonlinear Programming,” IEEE Transactions on Power Delivery, Vol. PWRD-2, No.4, pp. 1310-1316, 1987.
[35] K. Aoki, M. Fan, and A. Nishikori, “Optimal Var Planning by Approximation Method for Recursive Mixed Integer Linear Planning,” IEEE Transactions on Power Systems, Vol. PWRS-3, No. 4, pp. 1741-1747, 1988.
[36] O. Boone and H.D. Chiang, “Optimal Capacitor Placement in Distribution Systems by Genetic Algorithm,” International Electrical Power & Energy Systems, Vol. 15, No. 3, pp. 155-162, 1993.
[37] S. Sundhararajan and A. Pahwa, “Optimal Selection of Capacitors for Radial Distribution Systems Using a Genetic Algorithm,” IEEE Transactions on Power Systems, Vol. 9, No. 3, pp. 1499-1507, Aug. 1994.
[38] K.N. Miu, H.D. Chiang, and G. Darling, “Capacitor Placement, Replacement and Control in Large-Scale Distribution Systems by a GA-based Two-stage Algorithm,” IEEE Transactions on Power Systems, Vol. 12, No. 3, pp.1160-1166, Aug. 1997.
[39] C.C. Liu and T. Dillon, “State-of-the-art of Expert System Applications to Power Systems,” International Electrical Power & Energy Systems, Vol. 14, No. 2, pp. 86-92, 1992.
[40] M.M.A, Salama and A.Y. Chikhani, “An Expert System for Reactive Power Control of a Distribution Systems. Part 1: System Configuration,” IEEE Transactions on Power Delivery, Vol. 7, No. 2, pp. 940-945, Apr. 1992.
[41] J.R.P.R. Laframboise, G. Ferland, A.Y. Chikhani, and M.M.A. Salama, “An Expert System for Reactive Power Control of a Distribution System. Part 2: System Implementation,” IEEE Transactions on Power Systems, Vol. 10, No. 3, pp. 1433-1441, Aug. 1995.
[42] T. Ananthapadmanabha, A.D. Kulkami, A.S. Gopala Rao, and K. Raghavendra Rao, “Knowledge-based Expert System for Optimal Reactive Power Control in Distribution System,” International Electrical Power & Energy Systems, Vol. 18, No. 1, pp. 27-31, 1996.
[43] N.I. Santoso and O.T. Tan, “Neural-net Based Real-time Control of Capacitors installed on Distribution Systems,” IEEE Transactions on Power Delivery, Vol. 5, No. 1, pp. 266-272, Jan. 1990.
[44] Z. Gu and D.T. Rizy, “Neural Networks for Combined Control of Capacitor Banks and Voltage Regulators in Distribution Systems,” IEEE Transactions on Power Delivery, Vol. II, No. 4, pp. 1921-1928, Oct. 1996.
[45] L.A. Zadeh, “Fuzzy sets,” Information and Control, Vol. 8, pp. 338-353.
[46] H.C. Chin, “Optimal Shunt Capacitor Allocation by Fuzzy Dynamic Programming,” Electric Power Systems Research, Vol. 35, pp. 133-139, 1995.
[47] H.N. Ng, M.M.A. Salama, and A.Y. Chikhani, “Capacitor Allocation by Approximate Reasoning: Fuzzy Capacitor Placement,” IEEE Transactions on Power Delivery, Vol. 15, No. 1, pp. 393-398, Jan. 2000.
[48] 何金生, “應用差分進化法於配電系統電容器配置之研究, ” 國立中正大學電機工程研究所碩士論文, 1999.
[49] C.S. Chen, C.T. Hsu, and Y.H. Yan, “Optimal Distribution Feeder Capacitor Placement Considering Mutual Coupling Effect of Conductors”, IEEE Transactions on Power Delivery, Vol. 10, No. 2, pp. 987-994, April 1995.
[50] J.C. Wang, H.D. Chiang, K.N. Miu, and G. Darling, “Capacitor Placement and Real time Control in Large-scale Unbalanced Distribution Systems : Loss Reduction Formula, Problem Formulation, Solution Methodology and Mathematical Justification,” IEEE Transactions on Power Delivery, Vol. 12, No. 2, pp. 953-958, April 1997.
[51] H.D. Chiang, J.C. Wang, and G. Darling, “Optimal Capacitor Placement and Control in Large-scale Unbalanced Distribution Systems : System Modeling and a New Formulation,” IEEE Transactions on Power Systems, Vol. 10, No. 1, pp.356-362, Feb. 1995.
[52] K. A. Birt, J. J. Graffy, J. D. McDonald, and A. H. El-Abiad, “Three Phase Load Flow Program,” IEEE Transactions on Power Apparatus and Systems, Vol. PAS-95, No. 1, pp. 59-65, 1976.
[53] T.H. Chen, M.S. Chen K.J. Hwang, P. Kotas, and E.A. Chebli, ”Distribution System Power Flow Analysis - A Rigid Approach,” IEEE Transactions on Power Delivery, Vol. 6, No. 3, pp. 1146-1152, July 1991.
[54] S.K. Goswami and S.K. Basu, “Direct Solution of Distribution Systems,” IEE Proc.-Generation, Transmission and Distribution, Vol. 138, No. 1, pp. 78-88, Jan. 1991.
[55] 李雪銀, “實用配電饋線電容器規劃,” 國立中山大學電機工程研究所碩士論文, 1994.
[56] J.H. Teng, “A Linear Model for Real-time Capacitor Control in Unbalanced Distribution System,” IEEE Power Engineering Society Summer Meeting, Vol. 4, pp. 2391-2396, 2000.
[57] 周惠民, “配電系統損失之分析,” 國立中山大學電機工程研究所碩士論文, 1992.
[58] W.M. Lin, Y.S. Su, S.C. Chang, M.T. Tsay and S.J. Chen, “The Optimal
Loss Reduction of Distribution Feeder Based On Special Distribution
Transformers Reconnection Using Genetic Algorithm,” 2000
International Conference on Power System Technology(Powercon 2000), pp. 1413-1418, 4-7 December 2000.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 44.220.43.170
論文開放下載的時間是 校外不公開

Your IP address is 44.220.43.170
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code