Responsive image
博碩士論文 etd-0814103-173032 詳細資訊
Title page for etd-0814103-173032
論文名稱
Title
高屏溪流域主要及微量元素地球化學:自然風化及人為作用之影響
Geochemistry of Major and Trace Elements in the Kaoping River:Weathering and Human Influences.
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
104
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2003-07-25
繳交日期
Date of Submission
2003-08-14
關鍵字
Keywords
微量元素、主要元素、風化、高屏溪、污染
contamination, trace element, weathering, the Kaoping River, major element
統計
Statistics
本論文已被瀏覽 5668 次,被下載 3396
The thesis/dissertation has been browsed 5668 times, has been downloaded 3396 times.
中文摘要
摘要
本研究主要目的在探討高屏溪流域自然風化及人為作用對河川主要及微量元素之空間以及時間序列分布變化之影響,以瞭解高屏溪主要及微量元素之產生,傳送與輸出之控制機制。
研究結果顯示高屏溪流域風化程度指標甚高,河川懸浮顆粒主要離子的淋失與鐵鋁之富集均顯示出熱帶河川高風化程度之特性,由顆粒態Si/Al mole比值顯示高屏溪流域溶解及顆粒物質組成主要受岩石礦物風化成高嶺土或其他2:1型礦物所控制。
於研究期間(2002年),利用高屏溪流域之流量、懸浮沈積物通量及水體中主要離子通量推算出此流域之物理風化產率為655.8 g/m2/yr,與楊(2001)所測得之結果3601 g/m2/yr差距很大;化學風化產率為416.2 g/m2/yr,約僅為楊(2001)所測得之36.57%,其差異主要係流量變化很大所致,但仍較全球物理風化平均150 g/m2/yr及化學風化平均33-40 g/m2/yr高出許多。此結果亦顯示高屏溪流域風化產率年際間變化甚大,係受雨量變化影響所致。高屏溪流域的化學風化中,矽酸岩礦物風化約佔97.09 ± 2.41 %。
高屏溪流域懸浮顆粒之微量元素(錳、鋅、銅、鉻、鉛、鎘、汞)於時序分布之富集因子(EF)顯示,枯水期之微量元素人為污染程度較高;空間分布上,則為下游的高屏溪污染較嚴重。由連續觀測顯示,顆粒態微量元素之濃度變化受流量之影響,即流量越大,濃度越低,而流量較低時,易受人為污染影響;溶解態微量元素之濃度變化亦受流量之影響,但是未達顯著之負相關性。微量元素之通量與流量呈顯著之正相關,顯示流量決定了顆粒態及溶解態微量元素之通量。由輸出產值之年度差異顯示,雨量變化可能主宰高屏溪流域之風化程度並決定了沈積物及元素之通量。
高屏溪懸浮顆粒及高屏峽谷表層沈積物之顆粒態有機碳(POC)及顆粒態氮(PN)含量相近,而以δ13Corg估算高屏溪流域的輸出有機物質約有77.2 % 沈降進入高屏峽谷,顯示高屏峽谷對於有機物質的傳輸與貯匯扮演了重要的角色。
Abstract
Abstract
This study aims to understand the influence of weathering and human perturbation on spatial and temporal variability of major and trace element distributions in the Kaoping River basin. The collected data are used to elucidate the production, transport and export of major and trace elements from the Kaoping River basin.
Experimental results show that the weathering index of the Kaoping River basin is rather high. The significant loss of major ions and enrichment of iron and aluminum from river suspended matter indicate the characteristic of high weathering rate in most tropical rivers. Particulate Si/Al mole ratios range from 1 to 2 showing that the distributions of dissolved and particulate matter are largely controlled by the weathering process of kaolinite and /or smectite formation.
During the study period (2002), the physical and chemical weathering rates were estimated about 655.8 and 416.2 g/m2/yr, respectively. Both physical and chemical weathering rates are much lower than those estimated by Yang (2001) during the period of 1999-2000 [3601 g/m2/yr (physical weathering rate), 1146 g/m2/yr (chemical weathering rate)], due to significant difference in river discharge. However, the estimated physical and chemical weathering rates are still much higher than the world averages of physical (150 g/m2/yr) and chemical (33-40 g/m2/yr) weathering rates. The marked difference between this and Yang’s estimates is caused from large difference in river discharge. Silicate weathering was estimated about 97.09 ± 2.41% of total chemical weathering in the Kaoping River basin.
The temporal variations of enrichment factor (EF) for most particulate trace metals (Mn, Zn, Cu, Cr, Pb, Cd, and Hg) reveal a greater pollution status in the dry season than in the wet season. Spatial variations of EF also reveal a greater pollution in the downstream zone than in the upstream zone. Time-series observation showed that concentrations of particulate trace elements were inversely correlated with discharge. The significant correlation between the fluxes of dissolved and particulate trace elements and discharge suggesting that river discharge controlled largely the fluxes of major and trace elements. The annual variations of elemental fluxes were determined critically by the annual difference of river discharge.
The distributions of particulate organic carbon (POC) and particulate nitrogen (PN) were similar between suspended matter in the Kaoping River and surface sediments in the Kaoping Canyon. The data of δ13Corg show that about 77.2% of organic matter derived from the Kaoping River basin deposit in the Kaoping Canyon. The Kaoping Canyon appears to play an important role on the transport and deposition of organic matter from the Kaoping River basin.
目次 Table of Contents
目錄
中文摘要………………………………………………………………II
英文摘要………………………………………………………………IV
目錄……………………………………………………………………VI
圖目錄…………………………………………………………………VII
表目錄………………………………………………………………… IX

第一章 前言…………………………………………………………….1
第二章 研究區域
2-1 高屏溪流域…………………………………………………...4
2-2 高屏溪流域地質及土壤背景………………………………...9
2-3 高屏海底峽谷……………………………………………….12
第三章 材料及方法
3-1 採樣地區及方法…………………………………………….15
3-2 樣品分析…………………………………………………….16
3-3 高屏溪流域溶解及顆粒態元素通量……………………….28
第四章 結果
4-1 高屏溪流域主要元素及微量元素之時空分布……..............29
4-2 高屏溪下游萬大橋密集觀測之季節性變化………………..33
4-3 高屏溪流域之輸出通量……………………………………..44
4-4 高屏溪流域與高屏峽谷物質之分布情況…………………..55
第五章 討論
5-1 高屏溪流域風化作用與溶解態及顆粒態物質分布關係….61
5-2 高屏溪流域微量元素之地化特徵與污染現況…………….70
5-3 由連續觀測探討自然(流量)與人為作用對微量元素產生與輸出之影響……………………………………………………83
5-4 由萬大橋連續觀測結果與前人(楊,2001)所測得之數據看高屏溪之年度變化……………………………………………91
5-5 高屏溪流域有機碳的輸出對高屏峽谷顆粒態碳之影響….93
第六章 結論…………………………………………………………..96
參考文獻
中文部分…………………………………………………………98
英文部分………………………………………………..………100
參考文獻 References
參考文獻
中文部分:
何春蓀,1982。台灣地體構造的演變。經濟部出版,共120頁。
周文臣,1994。台灣東緣外海及日本海沈積物中碳、氧同位素之地球化學研究。國立中山大學海洋地質研究所碩士論文,共117頁。
周文臣、許德惇、洪佳章、鍾玉嘉、洪國瑋和Cindy Lee,2002。2002年海洋科學成果發表會論文摘要集。273-277頁。
洪佳章和陳鎮東,1989。台灣南部酸雨及其與空氣污染關係。中華民國環境保護學會會誌第十二卷第一期,1-11頁。
洪佩瑩,2001。大鵬灣碳及營養鹽之生地化作用及通量研究。國立中山大學海洋地質及化學研究所碩士論文,共156頁。
陳茂欽,1991。東港溪及河口微量元素之地球化學研究。中山大學海洋地質研究所碩士論文,共110頁。
許峻嵐,2000。高屏海域沈積物重金屬之分佈與污染史。中山大學海洋地質及化學研究所碩士論文,共133頁。
楊鈞沂,2001。高屏溪流域陸源物質之剝蝕與傳輸。中山大學海洋地質及化學研究所碩士論文,共127頁。
楊詔凱,2000。利用感應偶合電漿質譜法及電花剝蝕感應偶合電漿光譜法應用於彈頭鉛同位素分析集合金材料中微量元素得直測分析研究。國立清華大學原子科學研究所碩士論文,共113頁。
萬政康和洪佳章,2000。自然水體中汞含量之測定:改良式一次汞齊化冷蒸氣原子吸收光譜法。中華民國環境保護學會會誌,第二十三卷,第二期,125-138頁。
趙振華,1997。微量元素地球化學原理。科學出版社,共238頁。
蔡安邦,2000。地球化學,考用出版社,共420頁
劉坤章,1999。從沈積物粒徑的分布來看高屏溪口近岸海域的沈積物傳輸。中山大學海洋地質及化學研究所碩士論文,共99頁。
英文部分:
Berner, E. K. and R. A. Berner, 1987. The Global Water Cycle, Geochemistry and Environment. Prentice-Hall, Englewood Cliffs, NY, 383pp.
Benoit, G. and T. F. Rozan, 1999. The influence of size distribution on the particle concentration effect and trace metal partitioning in river. Geochim. Cosmochim. Acta, 63(1): 113-127.
Bonnvic, N. L., S. L. Huntly, B. W. Found and R. J. Wenning, 1994. Trace metal concentration in surficial sediments from Newark Bay, New Jersey. Sci. Total Environ., 144: 1-16.
Boutron, C., 1982. Atmospheric trace metals in the snow layers deposited at the South Pole from 1928 to 1977. Atmos. Environ., 16: 2451-2459.
Bowen, H.T.M., 1979. Environmental chemistry of elements. Academic, London New York Toronto. 333pp
Chen, C. T. and J. J. Hung, 1987. Acid rain and lake acidification in Taiwan. Proc. Natl. Sci. Counc. (ROC), 11: 436-442.
David, L. T., 2000. Calculation of river discharge. LOICZ Report & Studies, No.14, pp141-147.
Edmond J. M., M. R. Palmer, C. I. Measures, B. Grant and R. F. Stallard, 1995. The fluvial geochemistry and denudation rate of the Guayana Shield in Venezuela, Colombia, and Brazil. Geochim. Cosmochim. Acta, 59: 3301-3325.
Forstner, U., 1990. Sediments chemistry and toxicity of in-place pollutants: Inorganic sediment chemistry and elemental speciation. Lewis Publishers, Chelsea, MI, pp.61-105. (from Bonnevie, 1994)
Galloway, J. N., G. E. Likens, W. C. Keene, and J. M. Miller, 1982. The composition of precipitation in remote areas of the world. J. Geophy. Res., 87: 8771-8786.
Gaillardet, J., B. Dupre, C. J. Allegre and P. Negrel, 1997. Chemical and physical denudation in the Amazon River Basin. Chem. Geol., 142: 141-173.
Garrels, R. M. and F. T. MacKenzie, 1971. Evolution of Sedimentary Rocks, Norton, New York.
Hung, J. J. 1998. Fluxes and transport of organic carbon and trace metals in the tropical Tsengwen estuary, southwestern Taiwan. Chem. Ecol., 15:47-68.
Hung, J. J and P. L. Lin, 1995. Distribution of dissolved organic carbon in the continental margin off northern Taiwan. Terrest. Atmos. Oceanogr., 6: 13-26.
Ho, C. -S., 1986. An Introduction to the Geology of Taiwan, Explanatory Text of the Geologic Map of Taiwan, 2nd ed. The Ministry of Economic Affairs, 164 p.
Kemp, A. L. W. M., R. L. Thomas, C. I. Dell and J. M. Jaquet, 1976. Cultural impact on the geochemistry of sediments in lake. Eri. J. Fish Res. Bord. Can., 33: 440-462.
Li, Y-H., L. Burkhardt, M. Buchholtz, P. O’Hara and P. H. Santschi, 1984. Partition of radiotracers between suspended particles and seawater. Geochim. Cosmochim. Acta, 48: 2011-2019.
Meade, R. H., 1982. Sources, sinks and storage of river sediment in the Atlantic drainage of the United States. J. Geol., 90: 235-252.
Meybeck, M., 1987. Global chemical weathering from surficial rocks estimated from river dissolved loads. Am. J. Sci., 287: 401-428.
Martin, J. M. and M. Meybeck, 1979. Elemental mass-balance of material carried by major world rivers. Mar. Chem., 7:173-206.
Martin, J. M. and M. Whitfield, 1983. The significance of the river input of chemical elements to the ocean. In: Wong, C. S., Boyle, E., Bruland, K. W., Burton, J. D., Goldbreg, E. D. (Eds.), Trace Metals in Seawater. Plenum, New York.
Milliman, J. D. and R. H. Meade, 1983. World-wide delivery of river sediments to the oceans. J. Geol., 91: 1-21.
Milliman, J. D., J.P.M. Syvitski, 1992. Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. J. Geol., 100: 525-544.
Munoz, E., S., Palmero, M. A. Garcia-Garcia, 2002. A continuous flow system design for simultaneous determination of heavy metals in river water samples. Talanta, 57: 985-992.
Negrel, P., C. J. Allegre, B. Lewin, 1993. Erosion sources determined by inversion of major and trace element ratios in river water: the Congo Basin case. Earth Planet. Sci. Lett., 120: 59-76.
Negrel, P. and C. Grosbois, 1999. Changes in chemical and 87Sr/86Sr signature distribution patterns of suspended matter and bed sediments in the upper Loire river basin (France). Chem. Geol., 156: 231-249.
Nriagu, J. O. and J. M. Pacyna, 1988. Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature, 333: 134-139.
Pai, S. C. and C. C.Yang , 1990. Effects of acidity and mollybdate concentration on the kinetics of the formation of the the phosphoantimonylbdenum blue complex. Anal. Chem. Acta, 229: 115-120.
Pankow, J. F. and S. W. McKenzie, 1991. Parameterizing the equilibrium distribution of chemicals between the dissolved, solid particulate matter, and colloidal matter compartments in aqueous systems. Environ. Sci. Technol., 25(12): 2046-2053.
Pederson, B. A. 1992. A microwave digestion technique for trace element analysis of industrial furance feed-stream. Presented in the Boiler and Industrial Furance Meeting. Orlando, Florida Meeting organized by the Air & Waste Management Association.
Pankow, J. F. and S. W. McKenzie, 1991. Parameterizing the equilibrium distribution of chemicals between the dissolved, solid particulate matter, and colloidal matter compartments in aqueous systems. Environ. Sci. Technol., 25(12): 2046-2053.
Poulton, S. W. and R. Raiswell, 2000. Solid phase associations, oceanic fluxs and the anthropogenic perturbation of transition metals in world river particulates. Mar. Chem., 72: 17-31.
Qu, C. H. and R. Yan, 1990. Chemical composition and factors controlling suspended matter in three major Chinese rivers. Sci. Total Environ., 97:335-346.
Sequeira, R., 1981. Acid rain: some preliminary results from global data. J. Geophy. Res., 8: 147-150.
Shiller, A. M., 1997. Dissolved trace elements in Mississippi River: seasonal, interannual, and decadal variability. Geochim. Cosmochim. Acta, 61: 4321-4330.
Strickland, J. D. H. and T. R. Parson, 1972. A practical handbook of seawater analysis. Bull. Fish. Res. Boasd Can., 2nd Edn., 167: 311pp.
Stumm, W. and J. J. Morgan, 1996. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters. Wiley, New York, NY, 3rd ed., 1022pp.
Ure, A. M. and M. L. Berrow, 1982. The chemical constituents of soil. In: Bowen H.J.M.(ed) Environmental Chemistry. R. Soc. Chem, Burlington House, London 94-202.
US EPA, 1996. Method 1631: mercury in water by oxidation, purge, and trap and cold vapor atomic fluorescence spectrometry. U.S. Environmental Protection Agency, Office of Water, EPA 821-R-96-001.
Welschmeyer, N. A., 1994. Fluorometric analysis of chlorophyll a on the presence of chlorophyll b and pheopigments. Limnol. Oceanogr., 39: 1985-1992.
Williams, S.C., H. J. Simpson, C. R. Olsen and R. F. Bopp, 1978. Sources of heavy metals in sediments of the Hundson River estuary. Mar. Chem., 6: 195-213.
Yu, H., C. Huang and J. Ku, 1991. Morphology and possible origin of Kaoping submarine canyon head off southwest Taiwan. Acta Oceanogr. Taiwanica, 27: 40-50.
Zhang, J., 1995. Geochemistry of trace metals from Chinese river/estuary systems: an overview. Estuar., Coast. Shelf Sci., 41: 631-658.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code