Responsive image
博碩士論文 etd-0814104-143656 詳細資訊
Title page for etd-0814104-143656
論文名稱
Title
介穩態六方晶鈦酸鋇的缺陷分析
An analysis of defects in metastably retained hexagonal barium titanate
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
498
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2004-07-30
繳交日期
Date of Submission
2004-08-14
關鍵字
Keywords
相變化、差排、鈦酸鋇、疊差
dislocation, fault, phase transformation, BaTiO3
統計
Statistics
本論文已被瀏覽 5699 次,被下載 2389
The thesis/dissertation has been browsed 5699 times, has been downloaded 2389 times.
中文摘要
使用來自Cabot公司的工業用奈米級粉末熱壓燒結試片,試片在對於結晶相及包含疊差(stacking fault)和差排(dislocation)的微結構方面,藉由X光的繞射、掃描式及穿透式的電子顯微鏡做一系列的分析。
這個研究包含三個主要努力目標:(a)疊差(stacking fault)的分析,(b)六方相到正方相的轉換矩陣,和(c)差排分析。然而,這本論文描述鈦酸鋇相轉換的部分是利用數學上的公式來表示,熱壓燒結所導致的塑性變形可藉由微結構的分析來表示。利用微結構分析的根據去證實六方相鈦酸鋇高溫塑性變形的模型。
由X光的繞射和穿透式的電子顯微鏡得知,熱壓燒結試片包含主要的六方相鈦酸鋇(6H-多類型(polytype))及一部分的正方相鈦酸鋇。熱壓燒結試片中發現到處都有延伸的平面疊差(Extended planar stacking faults, EPSF’s),且具有合適的疊差向量RF(I) = (1/2)c + p(I)和RF(II) = (n/6)c + p’(II),且p(I) = 1/3
Abstract
Hot-pressed BaTiO3 ceramics are prepared from commercial nano-size powder supplied by Cabot. Samples have been thoroughly analysed for the crystalline phases, microstructure, including stacking faults and dislocations, by X-ray diffractometry, scanning electron microscopy, and transmission electron microscopy.
This research consists of three major endeavours: (a) the analysis of stacking faults, (b) the hexagonal
目次 Table of Contents
Abstract….………………………………………………………………………. iii

Content………………………….......…...……………………………………… vii

List of Tables……………………....……………………………………………. xv

List of Figures……………………………….………………………………….. xix

Chapter 1 Introduction........................................................................................ 1

1.1. Objectives of research........................................................................... 6

Chapter 2 Review of relevant literature............................................................ 8

2.1. The structure of perovskites…………………....…………………….. 8
2.2. Crystal structure of BaTiO3……………………....…………………... 11
2.2.1. Phase transformations in BaTiO3…............................................ 15
2.3. Structure of hexagonal-BaTiO3………………....……………………. 19
2.4. Equilibrium phase diagram of the BaO-TiO2 system…....………….... 30
2.4.1. Polytitanate phases...................................................................... 31
2.5. Twining in BaTiO3…………………...................…………………….. 35
2.6. Colour………………………………………......…………………….. 47
2.7. Diffraction from small volumes…………………...........................…. 48
2.7.1. Diffraction from wedge-shaped specimen.................................. 49
2.7.2. Diffraction from planar defects................................................... 49
2.7.3. Diffraction from wedge-shaped specimen and planar defects.... 50
2.8. Planar defects……………………………………................................ 53
2.8.1. α-boundaries................................................................................ 53
2.8.1.1. α-boundaries with = ±2π/3............................................... 54
2.8.2. Determination of type of α-boundaries....................................... 55
2.8.3. π-boundaries: antiphase domain boundaries............................... 56
2.8.4. δ-boundaries................................................................................ 60
2.9. Polytypes of hexagonal-BaTiO3............................................................ 63

Chapter 3 Experimental Procedures.................................................................. 67

3.1. Initial powders…………………………………..........................…… 67
3.2. Preparation of samples ………………………………….....…. 70
3.2.1. Hot-pressing equipment.............................................................. 70
3.2.2. Hot-pressing procedures............................................................. 72
3.3. Characterisation of sintered samples………...............................……. 73
3.3.1. X-ray diffractometry................................................................... 73
3.3.2. Scanning electron microscopy.................................................... 74
3.3.3. Transmission electron microscopy.............................................. 75
3.3.3.1. Thin foil preparation........................................................ 77
3.3.3.2. Bright-field and dark-field image techniques.................. 78
3.3.3.3. Two-beam dynamical diffraction..................................... 79
3.3.3.4. Howie-Whelan equations including a lattice translation 82
3.3.3.5. Effective extinction distance and effective excitation error..............................................................................................
83
3.3.3.6. Image characteristics for a perfect lattice........................ 84
3.3.3.7. Defect lattice contrast...................................................... 87
3.3.3.8. Weak-beam dark-field imaging........................................ 89
3.4. Planar lattice faults............................................................................... 92
3.4.1. Amplitude contrast imaging........................................................ 92
3.4.2. Kinematical theory of stacking-fault contrast............................. 92
3.4.3. Dynamical theory of stacking-fault contrast............................... 94
3.4.4. Analysis of stacking fault............................................................ 95
3.5. Analysis of dislocation substructures.................................................... 98
3.5.1. Determine of the Burgers vector................................................. 100

Chapter 4 Experimental results.......................................................................... 102

4.1. Macroscopic identification of crystalline phases................................... 102
4.1.1. Initial powder............................................................................... 102
4.1.2. Crystalline phases........................................................................ 104
4.1.3. Morphological microstructure of hot-pressed samples................ 112
4.1.4. Microstructure analysis of t-BaTiO3............................................ 114
4.1.5.. Microstructure of partially grown spherulitic h-BaTiO3 grains.. 118
4.1.6. Microstructure of fully grown spherulitic h-BaTiO3 grains........ 119
4.1.7. Twinning in t-BaTiO3 grains........................................................ 127

4.2. α-type staking faults containing no dislocations.................................... 134
4.2.1. Crystalline phases........................................................................ 134
4.2.2. General microstructure................................................................ 134
4.2.2.1. Fringe patterns.................................................................. 134
4.2.2.2. Invisibility criterian........................................................... 141
4.2.3. High-resolution images................................................................ 144

4.3. α-type staking faults with dislocations embedded……................…... 148
4.3.1. General observations - fringe patterns.......................................... 148
4.3.2. Determination of fault vectors for faults F1-F6............................ 156
4.3.2.1. Faults F1, F2, F3, and F4.................................................... 156
4.3.2.2. Fault F1’, F5 and F6........................................................... 159
4.3.3. Determination of dislocation types associated with faults........... 167

4.4. Dissociation of dislocations................................................................... 172
4.4.1. Fringes patterns............................................................................ 172
4.4.2. Burgers vectors analysis of dissociated dislocations.................... 176
4.4.3. True directions and character of dislocations............................... 180
4.4.4. Stacking faults bounded by the Shockley partial dislocations..... 185

4.5. Dissociation of dislocation lying in fault planes - I................................ 188
4.5.1. General observations.................................................................... 188
4.5.2. Dislocations and their analysis..................................................... 189
4.5.2.1. Dislocation Burgers vectors.............................................. 199
4.5.3. Dissociation into partials.............................................................. 206
4.5.4. Fault fringe pattern....................................................................... 208

4.6. Dissociation of dislocations lying in fault planes - II............................. 210
4.6.1. Analysis of stacking faults and dislocations................................. 210
4.6.2. High-resolution imaging.............................................................. 215
4.6.3. Stacking fault vectors.................................................................. 219

4.7. Dissociation of dislocations lying in fault planes - III........................... 223
4.7.1. General observations.................................................................... 223
4.7.2. Fault vectors................................................................................. 227
4.7.3. Dislocations and their analysis..................................................... 228
4.7.4. Dissociation into Shockley partials.............................................. 232
4.7.5. High-resolution atomic images.................................................... 232
4.7.5.1. Fault FA1............................................................................ 232
4.7.5.2. Fault FA2............................................................................ 234
4.7.5.3. Fault FA3............................................................................ 236
4.7.5.4. Fault FA4............................................................................ 236
4.7.5.5. Fault FA5............................................................................ 237
4.7.6. Summary...................................................................................... 243

4.8. The coexistence of tetragonal and hexagonal-BaTiO3......................... 244
4.8.1. Hexagonal-BaTiO3 particle in tetragonal-BaTiO3 matrix............ 244
4.8.1.1. Foil tilting along two standard triangles of the stereographic projection of t-BaTiO3.............................................
248
4.8.1.2. Zone axis patterns of h-BaTiO3 along the corresponding standard triangles............................................................................
248
4.8.1.3. Superlattice reflections..................................................... 252
4.8.1.4. Commensurate superlattice reflections............................. 253
4.8.1.5. Incommensurate superlattice reflections........................... 254
4.8.2. Tetragonal-BaTiO3 particle in hexagonal-BaTiO3 matrix........... 260
4.8.2.1. Superlattice reflections...................................................... 266

Chapter 5 Discussion…………………………………………............................ 274

5.1. Twinning in t-BaTiO3............................................................................. 274
5.1.1. Crystallographic orientation relationships................................... 276
5.1.2. Coincident site lattice................................................................... 277
5.1.3. Transformation matrix of twining in tetragonal-BaTiO3.............. 279

5.2. α-type staking faults containing no dislocations..…………………...... 281
5.2.1. Two general types of fault vectors............................................... 281
5.2.2. Eligible fault vectors for extrinsic faults...................................... 284
5.2.2.1. Fault FA............................................................................. 285
5.2.2.2. Fault FB............................................................................. 286
5.2.2.3. Fault FC.............................................................................. 288
5.2.2.4. Fault FD............................................................................. 288
5.2.2.5. Why faults FC and FD having an identical prismatic component in fault vectors could be oppositely inclined in high-resolution images?.................................................................

293
5.2.3. Why only three of the six fault vectors containing <01 0> are valid?......................................................................................................
293
5.2.4. Fault vector RFE = 1/3<1 1>........................................................
299
5.2.5. Metastable retention and formation of
參考文獻 References
Amelinckx, S., Gevers, R., and Van Landuyt, J., “Diffraction and Imaging Techniques in Material Science,” 2nd ed., North-Holland, Amsterdam, The Netherlands, 1978.
Amelinckx, S., Van Dyck, D., Van Landuyt, J., and Van Tendeloo, G., “Handbook of microscopy: Applications in materials science, solid-state physics and chemistry,” VCH, Weinheim, Germany, 1997.
A-Paz de Araujo, C., Cuchiaro, J. D., McMillan, L. D., Scott, M. C. and Scott, J. F., “Fatigue-free ferroelectric capacitors with platinum electrodes,” Nature, 374 [13] 627-629 (1995).
Akimoto, J., Gotoh, Y., and Oosawa, Y., “Refinement of hexagonal BaTiO3,” Acta cryst. C50 160-161 (1994).
Ashby, M. F., “A first report on deformation mechanism maps,” Acta metall., 20, 887-897 (1972).
Ashby, M. F., “A first report on sintering diagrams,” Acta metall., 22 [3] 275-289 (1974).
Auciello, O., Scott, J. F., and Ramesh R., “The physics of ferroelectric memories,” Physics Today, 51 [7] 22-27 (1998).
Baker, I., and Schulson, E. M., “On the intrinsic stacking faults in polycrystalline Ni3Al,” Phys. Stat. Sol. (a), 85 [2] 481-490 (1984).
Baker, I., Horton, J. A., and Shculson, E. M., “Some comments on dislocation bowing and partial separation during in-situ straining of
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code