Responsive image
博碩士論文 etd-0814107-170036 詳細資訊
Title page for etd-0814107-170036
論文名稱
Title
薄膜體聲波共振器之研製
The fabrication of thin-film bulk acoustic resonator
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
114
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-07-09
繳交日期
Date of Submission
2007-08-14
關鍵字
Keywords
薄膜體聲波共振器、氧化鋅、退火
ZnO, FBAR, Annealing
統計
Statistics
本論文已被瀏覽 5689 次,被下載 0
The thesis/dissertation has been browsed 5689 times, has been downloaded 0 times.
中文摘要
本研究採用背蝕型結構用以製作薄膜體聲波共振器,首先使用雙靶直流濺鍍系統, 沉積Pt 電極於Ti 晶種層上(Pt/Ti/SiNx/Si),以改善Pt 電極特性以及與SiNx/Si 基板間的附著性。接著利用射頻磁控濺鍍法來成長氧化鋅薄膜,分別以基板加溫及退火製程來改善氧化鋅薄膜特性。並以Al、Mo 和Pt 為頂電極製成FBAR 元件,並比較其頻率響應特性。當以射頻磁控濺鍍法在Pt/Ti/SiNx/Si 基板上沈積氧化鋅時,由於氧化鋅薄膜與Pt 電極間的晶格不匹配,及較快的沈積速率, 在薄膜沈積的同時就會造成鋅間隙及氧空缺的產生, 當薄膜中有不同缺陷的產生就會有應力的存在,因此以退火的製程來改善氧化鋅薄膜的品質,並將不同退火溫度下之氧化鋅薄膜製作成FBAR 元件來探討其頻率響應與薄膜應力之間的影響。
實驗結果發現Al 電極非常適合應用在FBAR 元件上,在三種不同頂電極之中,Al 電極有較佳的頻率響應特性。經400℃退火後的氧化鋅薄膜有較強的c 軸優選、表面緻密且平滑和低應力之特性,非常適合製作高Q 值的FBAR 元件,其基頻共振頻率為2.21GHz、有效機電耦合係數k eff 為2.88% 和品質因數Q 值為2659。
Abstract
In this study, the FBAR devices fabrication was used by back-etched type. The titanium (Ti) seeding layer and platinum (Pt) bottom electrode were deposited by DC sputtering system using a dual gun. To improve the platinum (Pt) adhesion, a seeding layer titanium (Ti) is used. The piezoelectric zinc oxide (ZnO) thin films were deposited by RF reactive
magnetron sputtering. By increase the substrate temperature and annealing treatment in order to improve the ZnO thin films quality. The FBAR device was fabricated with different top electrode of Al, Mo and
Pt that was compared different frequency response characteristic. When ZnO thin films are deposited on Pt/Ti/SiNx/Si substrate by RF reactive magnetron sputtering, due to the lattice mismatch between the
Zno thin film and Pt electrode and rapid deposition rate, the ZnO films have high Zn interstitials and O vacancy, which introduce the stress in ZnO films. By thermal annealing treatment the stress could be relaxed and the defects in ZnO films could be suppressed. We used the ZnO films at the different annealing temperature to fabricated the FBAR device, and also discussed the resonant characteristics of the FBAR device with the stress in the ZnO films.
Top electrode of Al is suitable for using as electrode materials for FBAR device. The Al top electrode revealed the best frequency response
characteristic among the various top electrodes in this research. Postdeposition annealing at 400℃makes ZnO films more suitable for high Q FBAR device, it makes ZnO films with stronger c-axis (002)
orientation, denser structure, smoother surface and relieved stress. The resonant frequency, the effective electromechanical coupling coefficient ( k eff ) and the quality factor (Q) were about 2.21GHz, 2.88% and 2659, respectively.
目次 Table of Contents
目錄
摘要...................................................................................... Ⅰ
目錄...................................................................................... Ⅲ
圖表目錄.............................................................................. Ⅵ
第一章 前言…....................................................................... 1
1.1 研究背影與動機............................................................. 1
1.2 薄膜塊體聲波共振器簡介............................................. 2
1.3 研究內容......................................................................... 5
第二章 理論分析................................................................... 8
2.1 壓電模數......................................................................... 8
2.2 晶體對稱性................................................................... 10
2.3 晶體學........................................................................... 11
2.4 壓電理論....................................................................... 12
2.4.1 壓電效應................................................................... 13
2.4.2 壓電方程式............................................................... 14
2.4.3 壓電材料................................................................... 16
2.5 氧化鋅結構與特性....................................................... 17
2.6 薄膜沈積原理............................................................... 18
2.6.1 沉積現象................................................................... 18
2.6.2 薄膜表面與截面結構............................................... 19
2.7 反應性射頻磁控濺鍍原理........................................... 20
2.7.1 輝光放電................................................................... 20
2.7.2 磁控濺射................................................................... 21
2.7.3 射頻濺射................................................................... 21
2.7.4 反應性濺射............................................................... 22
2.8 Mason model 等效電路分析..................................... 23
2.9 FBAR 結構及原理....................................................... 25
2.9.1 keff 之測量................................................................ 26
2.9.2 Q 值之測量............................................................... 26
第三章 實驗步驟................................................................ 28
3.1 直流濺鍍系統與薄膜沈積........................................... 28
3.2 射頻濺鍍系統與薄膜沈積........................................... 28
3.3 薄膜特性分析............................................................... 29
3.3.1 X 光繞射(X-Ray Diffraction, XRD)分析................. 29
3.3.2 掃描式電子顯微鏡(Scanning Electron Microscopy,
SEM)分析.................................................................. 30
3.3.3 原子力顯微鏡(Atomic Force Microscopy, AFM)分
析............................................................................... 30
3.4 FBAR 元件製作流程................................................... 31
3.4.1 RCA 清洗基板.......................................................... 31
3.4.2 SiNx 薄膜沉積.......................................................... 32
3.4.3 背部蝕刻窗口與底電極的製作............................... 32
3.4.4 KOH 蝕刻背部空腔................................................. 32
3.4.5 壓電層的製作........................................................... 32
3.4.6 頂電極的製作........................................................... 33
3.4.7 反應式離子蝕刻....................................................... 33
3.5 FBAR 元件測量........................................................... 33
第四章 結果與討論............................................................ 35
4.1 基板加溫沈積氧化鋅之實驗探討............................... 35
4.1.1 X 光繞射(X-Ray Diffraction, XRD)分析................. 35
4.1.2 掃描式電子顯微鏡(Scanning Electron Microscopy,
SEM)分析.................................................................. 36
4.1.3 原子力顯微鏡(Atomic Force Microscopy, AFM)分
析............................................................................... 37
4.2 室溫二階段沈積氧化鋅壓電薄膜之退火研究........... 39
4.2.1 X 光繞射(X-Ray Diffraction, XRD)分析................. 39
4.2.2 掃描式電子顯微鏡(Scanning Electron Microscopy,
SEM)分析.................................................................. 41
4.2.3 原子力顯微鏡(Atomic Force Microscopy, AFM)分
析............................................................................... 42
4.3 FBAR 元件量測........................................................... 43
4.3.1 元件量測結果與探討............................................... 44
第五章 結論........................................................................ 47
參考文獻............................................................................. 49

圖表目錄
圖1-1 FBAR 元件的(a)側視面,(b)上視圖..................... 58
圖1-2 體聲波元件的類型.................................................. 59
圖2-1 單位晶胞應力示意圖.............................................. 60
圖2-2 壓電效應,(a)正壓電效應,(b)逆壓電效應........ 61
圖2-3 氧化鋅(ZnO)結構.................................................... 62
圖2-4 薄膜沈積步驟,(a)成核,(b)晶粒成長,(c)晶粒聚結,(d)縫道填補,(e)薄膜的沈積................................... 63
圖2-5 濺鍍參數對沈積薄膜之影響.................................. 64
圖2-6 直流輝光放電結構與電位分佈圖.......................... 65
圖2-7 平面型圓形磁控之結構圖...................................... 66
圖2-8 平面磁控結構及電子運動路徑.............................. 67
圖2-9 反應性濺射之模型.................................................. 68
圖2-10 FBAR 幾何結構圖................................................. 69
圖2-11 Mason model 等效電路...................................... 69
圖2-12 不同頂電極材料之S 參數模擬圖........................ 70
圖2-13 聲波在高聲波能量反射介面的聲波反射示意圖 71
圖3-1 直流及射頻磁控濺鍍系統...................................... 72
圖3-2 FBAR 製作流程圖................................................... 73
圖3-3 舉離法...................................................................... 74
圖4-1 不同基板溫度沈積氧化鋅薄膜之XRD 圖,(a) 150℃,(b)200℃,(c)250℃,(d)300℃....................... 75
圖4-2 基板溫度與氧化鋅(002)XRD 繞射強度之關係圖76
圖4-3 不同基板溫度沈積氧化鋅薄膜之SEM 表面圖,(a)150℃,(b)200℃,(c)250℃,(d)300℃ ...................... 77
VII
圖4-4 不同基板溫度沈積氧化鋅薄膜之SEM 剖面圖,(a)150℃,(b)200℃,(c)250℃,(d)300℃ ...................... 78
圖4-5 不同基板溫度沈積氧化鋅薄膜之AFM 圖,(a)150℃,(b)200℃,(c)250℃,(d)300℃....................... 79
圖4-6 氧化鋅之表面粗糙度與不同沈積溫度之關係圖.. 80
圖4-7 氧化鋅在不同基板溫度下之沈積率...................... 80
圖4-8 室溫二階段沈積氧化鋅壓電薄膜之XRD 圖......... 80
圖4-9 氧化鋅在不同退火溫度之XRD 圖,(a)200℃,(b)300℃,(c)400℃,(d)500℃,(e)600℃ ..................... 82
圖4-10 退火溫度與氧化鋅薄膜(002)繞射峰之FWHM 之關係圖................................................................................. 83
圖4-11 退火溫度與氧化鋅薄膜(002)繞射峰角度之關係圖......................................................................................... 83
圖4-12 氧化鋅經不同溫度退火之SEM 表面圖,(a)200℃,(b)300℃,(c)400℃,(d)500℃,(e)600℃... 84
圖4-13 氧化鋅經不同溫度退火之SEM 剖面圖,(a)200℃,(b)300℃,(c)400℃,(d)500℃,(e)600℃ .. 85
圖4-14 氧化鋅經不同溫度退火之AFM 圖,(a)RT,(b)200℃,(c)300℃,(d)400℃,(e)500℃,(f)600℃.... 86
圖4-15 退火溫度與表面粗糙度之關係圖........................ 87
圖4-16 FBAR 元件上視圖................................................. 88
圖4-17 FBAR 元件背部蝕刻窗口圖................................. 88
圖4-18 FBAR 元件剖面圖................................................. 89
圖4-19 虛部阻抗對頻率響應圖........................................ 90
圖4-20 不同頂電極之FBAR 元件訊號量測圖,(a)Al,(b)Mo,(c)Pt ........................................................................... 91
圖4-21 不同退火溫度之氧化鋅薄膜所製作之FBAR 元件訊號量測圖,(a)200℃,(b)300℃,(c)400℃,(d)500℃,(e)600℃.............................................................. 93
表一 陶瓷濾波器、表面聲波濾波器、FBAR 濾波器比
較................................................................................ 94
表二 各種材料及空氣的聲波阻抗值................................ 94
表三 張量表示法與矩陣表示法........................................ 95
表四 正逆壓電效應的表示式............................................ 95
表五 七大晶系與壓電晶體點群關聯................................ 96
表六 氧化鋅與氮化鋁特性................................................ 97
表七 氧化鋅(ZnO)基本特性表.......................................... 98
表八 各層薄膜的參數........................................................ 99
表九 直流磁控濺鍍法沉積金屬之系統參數.................. 100
表十 加溫沈積氧化鋅之系統參數.................................. 101
表十一 室溫兩階段沈積氧化鋅之系統參數.................. 102
表十二 氧化鋅(ZnO)的JCPDS Data ............................ 103
表十三 基板加溫與兩階段濺鍍之參數.......................... 104
表十四 電極材料參數表.................................................. 104
表十五 訊號量測結果...................................................... 105
表十六 經不同溫度退火之氧化鋅晶格參數表.............. 105
參考文獻 References
參考文獻
[1] Brian P. Otis, Jan M. Rabaey, “A 300um 1.9GHz COMS oscillator
utilizing micromachined resonators,” IEEE Journal of solid-state
circuits, pp.1271-1274, vol.38, No.7, July 2003.
[2] Paul Bradley, Richard Ruby, John D. Larson III, Yury Oshmyansky,
Domingo Figueredo, “A Film Bulk Acoustic Resonator Duplexer for
USPCS Handset Applications,” IEEE MTT-S Digest, pp.367-370,
2001.
[3] Kok-Wan TAY, “Performance Characterization of thin AlN films
deposited on Mo Electrode for Thin-Film Bulk Acoustic-Wave
Resonators,” Japanese Journal of Applied Physics, vol. 43, No.8A,
pp.5510-5515, 2004.
[4] R. C. Ruby, P. Bradley, Y. Oshmyansky, “Thin film bulk acoustic
resonators for wireless applications,” IEEE Ultrason. Symp,
pp.813-821, 2001.
[5] Dong-Hyun Kim, Munhyuk Yim, Dongkyu Chai, Giwan Yoon,
“Improvements of resonance characteristics due to thermal
annealing of Bragg reflectors in ZnO-based FBAR devices,”
Electronics Letters, vol.39, No.13, June, 2003.
[6] J. Larson, “Power Handling and Temperature Coefficient Studies in
FBAR Duplexers for the 1900MHz PCS Band,” IEEE Ultrasonics
Symposium, pp.869-874, 2000.
[7] Motoaki Hara, Jan Kuypers, Masayoshi Esashi, “Surface
micromachined AlN thin film 2GHz resonator for CMOS
integration,” Sensors and Actuators, A117, pp.211-216, 2005.
50
[8] R. Aigner, J. Ella, H. -J. Timme, L. Elbrecht, W. Nessler,
S.Marksteiner, “Advancement of MEMS into RF-Filter
Applications,” IEEE IEDM, pp.897-900, 2000.
[9] R. B. Stokes and J. D. Crawfold: “X-Band Thin-Film Acoustic Filter
on GaAs”, IEEE Tans. Microwave Theory Tech., vol. 41, pp.
1075-1080, July 1993.
[10] V. Krishnaswamy, J. F. Rosenbaum, S. S. Horwitz, and R. A.
Moore: “Film Bulk Acoustic Wave Resonator and Filter
Technology”, IEEE Trans. MTT-S Dig., pp.153-155, 1992.
[11] M.Schmid, E. Benes, W. Burger, and V. Kravchenko: “Motional
Capacitance of :ayered Piezoelectric Thickness-mode Resonators”,
IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 38,
pp.199-206, May 1991.
[12] Jin-Bock Lee, Jun-Phil Jung, Myung-Ho Lee, Jin-Seok Park, Thin
Solid Films, 447 –448, (2004) 610–614.
[13] Dong-Hyun KIM, Munhyuk YIM, Dongkyu CHAI, Jin-Seok
PARK1 and Giwan YOON, Japanese Journal of Applied Physics
Vol. 43, No. 4A, 2004, pp. 1545–1550.
[14] K. H. Yoon and J. Y. Cho, “Photoluminescence characteristics of
zinc oxide thin films prepared by spray pyrolysis technique,” Mater.
Res. Bull., vol. 35, pp. 39-46, 2000.
[15] Z. Fu, B. Lin and J. Zu, “Photoluminescence and structure of ZnO
films deposited on Si substrates by metal-organic chemical vapor
deposition,” Thin Solid Films, vol. 402, pp. 302-306, 2002.
51
[16] J. Ye, S. Gu, S. Zhu, T. Chen, L. Hu, F. Qin, R. Zhang, Y. Shi and
Y. Zheng, “The growth and annealing of single crystalline ZnO
films by low-pressure MOCVD,” J. Crystal Growth, vol. 243, pp.
151-156, 2002.
[17] Y. Nakanishi, A. Miyake, H. Kominami, T. Aoki, Y. Hatanaka and
G. Shimaoka, “Preparation of ZnO thin films for high-resolution
field emission display by electron beam evaporation,” Appl. Surf.
Sci., vol. 142, pp. 233-236, 1999.
[18] X. H. Li, A. P. Huang, M. K. Zhu, Sh. L. Xu, J. Chen, H. Wang, B.
Wang, B. Wang and H. Yan, “Influence of substrate temperature on
the orientation and optical properties of sputtered ZnO films,”
Mater. Lett., vol. 75, pp. 4655-4659, 2003.
[19] W. Water and S. Y. Chu, “Physical and structural properties of ZnO
sputtered films,” Mater. Lett., vol. 55, pp. 67-72, 2002.
[20] S. H. Bae, S. Y. Lee, H. Y. Kim and S. Im, “Effects of
post-annealing treatment on the light emission properties of ZnO
thin films on Si,” Opt. Mater., vol. 17, pp. 327-330, 2001.
[21] Y. G. Wang, S. P. Lau, X. H. Zhang, H. W. Lee, S. F. Yu, B. K. Tay
and H. H. Hng, “Evolution of visible luminescence in ZnO by
thermal oxidation of zinc films,” Chem. Phys. Lett., vol. 375, pp.
113-118, 2003.
[22] K. Sakurai, M. Kanehiro, K. Nakahara, T. Tanabe and S. Fujita,
“Effects of oxygen plasma condition on MBE growth of ZnO,” J.
Crystal Growth, vol. 209, pp. 522-525, 2000.
[23] D. G. Baik and S. M. Cho, “Application of sol-gel films for
ZnO/n-Si junction solar cells,” Thin Solid films, vol. 354, pp.
52
227-231, 1999.
[24] Hee-Chul Lee, Jae-Young Park, Kyung-Hak Lee, and Jong-Uk Bu,
J. Vac. Sci. Technol. B, (2004) 1127-1133.
[25] K.M. Lakin, J.R. Belsick, J.P. McDonald, K.T. McCarron, and C.W.
Andrus, “Bulk Acoustic Wave Resonators And Filters for 2GHz”,
MTT-S 2002 Paper TH1D-6 Expanded.
[26] K. W. Tay, C. L. Huang, L. Wu and M. S. Lin, “Performance
Characterization of Thin AlN Films Deposited on Mo Electrode for
Thin-Film Bulk Acoustic Wave Resonators”, Jpn. J. Appl. Phys., vol.
43, pp. 5510-5515, 2004.
[27] P.B. Kirby, M.D.G. Potter, C.P. Williams and M.Y. Lim, “Thin Film
Piezoelectric Property Considerations for Surface Acoustic Wave
and Thin Film Bulk Acoustic Resonators”, Journal of the European
Ceramic Society, vol. 23, pp. 2689-2692, 2003.
[28] C. L. Huang, K. W. Tay and L. Wu, “Fabrication and Performance
Analysis of Film Bulk Acoustic Wave Resonators”, Materials
Letters, vol. 59, pp. 1012-1016, 2005.
[29] R. Jakkaraju , G. Henn , C. Shearer , M. Harris , N. Rimmer and P.
Rich, “Integrated Approach to Electrode and AlN Depositions for
Bulk Acoustic Wave (BAW) Devices”, Microelectronic Engineering,
vol. 70, pp. 566-570, 2003.
[30] S. H. Lee and J. K. Lee, “Growth of Highly c-axis Textured AlN
Films on Mo Electrodes for Film Bulk Acoustic Wave Resonators” ,
J. Vac. Sci. Technol. A 21, pp. 1-5, Jan/Feb 2003.
[31] M. Hara and M. Esashi, “RF MEMS and MEMS Packaging”.
53
[32] H. H. Kim, B. K. Ju, Y. H. Lee, S. H. Lee, J. K. Lee and S. W. Kim,
“A Noble Suspended Type Thin Film Resonator (STFR) Using the
SOI Technology”, Sensors and Actuators A, vol. 89, pp. 255-258,
2001.
[33] T. Mattil, A. Oja, H. Seppa, O. Jaakkola, J. Kiihamaki, H. Kattelus,
M. Koskenvuori, P. Rantakari, and I. Tittonen, “Micromechanical
Bulk Acoustic Wave Resonator”, 2002 IEEE Ultrasonic Symposium,
pp. 945-948.
[34] R. Lanz, P. Carazzetti and P. Muralt, “Surface Micromachined BAW
Resonators Based on AlN”, 2002 IEEE Ultrasonic Symposium, pp.
981-983.
[35] W. E. Newell, “Face-Mounted Piezoelectric Resonators”, in Proc.
IEEE, vol. 53, pp. 575-581, 1965.
[36] K. M. Lakin, “Development of Miniature Filters for Wireless
Applications,” IEEE Trans. On Microwave Theory and Techniques,
vol. 43, pp. 2933-2939, 1995.
[37] S. H. Kim and J. H. Kim, “Bragg Reflector Thin Film Resonator
Using Aluminium Nitride Deposition by RF Sputtering”.
[38] T. Nishihara, T. Yokoyama, T. Miyashita, Y. Satoh, “High
Performance and Miniature Thin Film Bulk Acoustic Wave Filters
for 5GHz,” IEEE Ultrasonics Symposium, pp. 969-972, 2002.
[39] A. Yamada, C. Maeda, F. Uchikawa, K. Misu, and T. Honma;
“Piezoelectric properties of La-doped PbTiO3 films for RF
resonators,”Jpn. J. Appl. Phys. 38, 5520 (1999).
[40] 劉吉卿,“以兩階段濺鍍法沉積氧化鋅壓電薄膜於薄膜體聲波共
54
振器之研究”,國立中山大學電機工程研究所碩士論文,(2006)。
[41] 莊達人,“VLSI 製造技術”,高立圖書股份有限公司,1995 年。
[42] A Cimpoia¸su, N M van der Pers, Th H de Keyser, A Venema and
M J Vellekoop; “ Stress control of piezoelectric ZnO films on silicon
substrates,” IOP Publishing Ltd, pp.744-750, 1996.
[43] Marc-Alexandre Dubois,Paul Muralt;“Stress and piezoelectric
properties of aluminum nitride thin films deposited onto metal
electrodes by pulsed direct current reactive sputtering,” J. Appl.
Phys.,Vol. 89, No.11, pp. 6389, 2001.
[44] Sheng-Yuan Chu,Walter Water,Jih-Tsang Liaw; “Influence of
postdeposition annealing on the properties of ZnO films prepared by
RF magnetron sputtering” Journal of the European Ceramic Society
23 (2003) 1593–1598.
[45] T. Yokoyama, T. Nishihara, S. Taniguchi, M. Iwaki,Y. Satoh, M.
Ueda; “New Electrode Material for Low-loss and High-Q FBAR
Filters,”IEEE Ultrasonics Symposium Vol.1,pp. 429- 432,2004.
[46] Gonzalo F. Iriarte, Johan Bjurstrom, Jorgen Westlinder, Fredrik
Engelmark, and Ilia V. Katardjiev, “Synthesis of C-Axis-Oriented
AlN Thin Films on High-Conducting Layers: Al, Mo, Ti, TiN,and
Ni,” ieee transactions on ultrasonics, ferroelectrics, and frequency
control,Vol.52,No.7, pp. 1170-1174,2005.
[47] 白木靖寬,吉田貞史,”薄膜工程學”,全華科技圖書股份有限公
司,2006 年1月。
[48] Jin Bock Lee, Jun Phil Jung, Myung Ho Lee, Jin Seok Park, “Effects
of bottom electrodes on the orientation of AlN films and the
55
frequency responses of resonators in AlN based FBARs,” Thin Solid
Films, pp. 610-614, 2004.
[49] Morito Akiyama, Keigo Nagao, Naohiro Ueno, Hiroshi Tateyama,
“Influence of metal electrodes on crystal orientation of aluminum
nitride thin films,” Journal of Vacuum Science and Technology,
vol.74, pp. 699-703, 2004.
[50] 吳朗,“電子陶瓷:壓電陶瓷”,全欣資訊,(1994)7.
[51] Qing Xin Su, Paul Kirby, Eiju Komuro, Massaaki Imura, Qi Zhang,
Roger Whatmore, “Thin Film Bulk Acoustic Resonators and Filters
Using ZnO and Lead Zirconium Titanate Thin Films,” IEEE
Transactions on microwave theory and techniques, vol.49, No.4,
pp.769-778, April 2001.
[52] 水瑞鐏,“氧化鋅薄膜特性及其在通訊元件與液體感測器上之應
用”,國立成功大學電機工程學系博士論文,(2002)。
[53] P. Nunes, D. Costa, E. Fortunato and R. Martins, “Performances
presented by zinc oxide thin films deposited by r.f. magnetron
sputtering,” Vacuum, vol. 64, pp. 293-297, 2002.
[54] S. Tuzemen, G. Xiong, J. Wilkinson, B. Mischuck, K. B. Ucer and R.
T. Williams, “Production and properties of p-n junctions in
reactively sputtered ZnO,” Physica B, vol. 308-310, pp. 1197-1200,
2001.
[55] Y. Igasaki and H. Saito, “The effects of Zinc diffusionon the
electrical and optical properties of ZnO:Al films prepared by RF
reactive sputtering,” Thin Solid Films, vol. 199, pp. 223-230, 1991.
[56] M.T. Young and S.D. Keun, “Effects of rapid thermal annealing on
56
the morphology and electrical properties of ZnO/In Films,” Thin
Solid Films, vol. 410, pp. 8-13, 2002.
[57] J. A. Thornton, “Influence of apparatus geometry and deposition
conditions on the structure and topography of thick sputtered
coatings,” J. Vac. Sci. Technol., vol. 11, pp. 666-698, 1974.
[58] 施敏著,張俊彥譯,”半導體元件之物理與技術”,儒林,(1990)425.
[59] R. W. Berry, P. M. Hall and M. T. Harris, “Thin Film Technology”,
van Nostrand Reinhold, 1980, 201.
[60] J. L. Vossen and W. Kern, “Thin Film Process”, Academic Press,
1991, 134.
[61] E. Janczak-Bienk, H. Jensen and G. Sorensen, “The Influence of the
Reactive Gas Flow on the Properties of AlN Sputter-Deposited
Films”, Mater. Sci. and Eng. A, vol. 140, pp.696-701, 1991.
[62] 王宏灼,”反應性射頻濺鍍法成長氮化鋁薄膜之研究”,國立中山
大學電機工程研究所碩士論文,(1995)。
[63] 蔡家龍,”製程參數對濺射沈積氮化鋁薄膜之影響”,國立中山大
學電機工程研究所碩士論文,(2000)。
[64] 歐天凡,”沈積條件對氮化鋁薄膜壓電係數及機電耦合係數之影
響”,國立中山大學電機工程研究所碩士論文,(2004)。
[65] 郭益男,“反應性射頻磁控濺鍍氧化鋅薄膜之光激發光特性之研
究”,國立中山大學電機工程研究所碩士論文,(2004)。
[66] Sang-Hyun Park, Byeng-Chul Seo, Hee-Dae Park and Giwan Yoon,
“Film Bulk Acoustic Resonator Fabrication for Radio Frequency
57
Filter Applications,” J. Appl. Phys., Vol. 39 (2000) pp.4115-4119
[67] I. Zubel, M. Kramkowska : Seners and actuators A 115 (2004)
549-556.
[68] Hangong C.,Jianguo Lu,Zhizhen Y.,Lei W.Binghui Z. “The Effect of
Thermal Annealing on ZnO Thin Films by Reactive Magnetron
Sputtering,”Vacuum Science And Technology, Vol.22, No.6,
pp467-470, 2002
[69] T.K. Subramanyam, B. Srinivasulu Naidu, S. Uthanna. “Effect of
substrate temperature on the physical properties of DC reactive
magnetron sputtered ZnO Films,”Optical Materials Vol.13,pp
239-247,1999.
[70] Z.B. Fang, Z.J. Yan, Y.S. Tan, X.Q. Liu, Y.Y. Wang. “Influence of
post-annealing treatment on the structure properties of ZnO films,”
Applied Surface Science,Vol.241,pp303–308,2005.
[71] C.J.Gawlak and C.R.Aita, “Stress relief of basal orientation zinc
oxide thin films by isothermal annealing,” J.Vac.Sci.Technol.A,
Vol.1,No.2,pp415-418,1983.
[72] Anthony Barker, Simon Crowther a, David Rees, Room-temperature
r.f. magnetron sputtered ZnO for electromechanical devices,”
Sensors and Actuators A, Vol.58,pp 229-235,1997.
[73] Vinay Gupta and Abhai Mansingh. “Influence of postdeposition
annealing on the structural and optical properties of sputtered zinc
oxide film,” J. Appl. Phys. Vol.80 No.2,15, 1996.
[74] 柯賢文,”表面與薄膜技術處理”,全華科技圖書股份有限公司,
2005年12月。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.149.250.1
論文開放下載的時間是 校外不公開

Your IP address is 3.149.250.1
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code