Responsive image
博碩士論文 etd-0814111-211021 詳細資訊
Title page for etd-0814111-211021
論文名稱
Title
波浪作用下啟動沙量試驗研究
Hydraulic Model Study on the Wave-Moved Sediment
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
150
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-07-28
繳交日期
Date of Submission
2011-08-14
關鍵字
Keywords
碎波渦流係數、徐爾滋數、水工模型試驗、啟動沙量、碎波剪力參數
wave-moved sediment, turbulent eddy viscosity, hydraulic model, Shields number, movable parameter
統計
Statistics
本論文已被瀏覽 5659 次,被下載 271
The thesis/dissertation has been browsed 5659 times, has been downloaded 271 times.
中文摘要
本研究之目的在於探討近岸規則波浪作用下發生移動的漂沙量與波浪條件間的關係。鋪設1/60、1/45及1/30三種坡度的動床模型進行水工模型實驗,利用兩種中值粒徑同為0.1mm且物理特性相近但顏色不相同(黑、白)的沙粒,將受波浪啟動而發生位移的漂沙現象可視化,並定義此種漂沙量為啟動漂沙量。實驗使用數位影像記錄沿著水槽玻璃觀測窗所發生的漂沙現象,並以影像處理技術計算及分析此漂沙厚度與漂沙量。底床顆粒受渦流擾動產生的排列混合行為,使得試驗可以黑白兩色試驗沙辨識底床顆粒的啟動狀態,本文評估此種試驗方法所得結果的重複性,且另外選擇模型三個區域設置垂直於波浪入射方向的檢驗區塊,驗證經由玻璃觀測窗所測得的沙量的代表性。試驗的波浪條件其尖銳度在0.078~0.007之間,造波次數最大長達39,600次,全部共計55組試次。
研究的結果顯示,兩種參數與啟動沙關係密切:其一為碎波渦流係數,說明碎波帶內渦流效應乃是影響啟動沙的主要因素。其二則是碎波剪力參數,藉著引入斜坡的摩擦比例式,啟動沙與碎波剪力參數具有顯著的線性關係。分析結果發現一波浪作用時間經驗式,得以評估不同時間的啟動沙量狀態。本研究亦利用碎波水深與碎波點離岸距對啟動沙層的分佈曲線無因次化,找到啟動沙層厚度分佈的描述經驗式,由厚度分佈函數可對啟動沙層的空間變化狀態得到較為統一的瞭解。
Abstract
In the study, an innovative method is developed in 2-D wave flume tests to explore how much sand is set in motion by waves, and how wave-moved sediment is related to wave properties. Wave conditions on an initial sea bed slopes with grain size of about 0.1mm are varying during the experiments. Three initial bottom slopes of 1/30, 1/45, and 1/60 are analyzed in the study. The total number of waves acting is about 39,600 for each wave condition. The accumulated time of generated waves during the study is more than 1,280 hours; this is equivalent to about 2.45 million waves.
The dark sands, along the observing window of the wave tank, of an initial sea bed are replaced by a slice column of white sands. The mixing caused by the waves moved dark and white sands together which generates a layer of grey sands that marks the interface of moved and unmoved white sands on the window. In some cases, three additional white sand columns are merged into the dark sand body perpendicular to the window to verify the uniformity of the moved layer in the wave crest direction. The quantity of the moved sediment is then computed and the wave-moved sediment by each wave is evaluated.
Results show that the wave-moved sediment by each wave is linearly correlated to the wave breaking induced turbulent eddy viscosity, based on Prandtls mixing length model. The corresponding proportional coefficient reaches an asymptotic value as the number of acting waves is more than about 10,000. A Similar trend, but more diverse, is found when the wave-moved sediment is related to a movable parameter defined from the Shields number in which the Komars relation of bottom friction and slope is applied. However, the results indicate that the wave-moved sediment does not linearly correlate with the breaking wave power as proposed by most previous studies.
目次 Table of Contents
中文摘要 ……………………………………………………………………… I
英文摘要 ……………………………………………………………………… II
目錄 …………………………………………………………………………… III
表目錄 ………………………………………………………………………… VI
圖目錄 ………………………………………………………………………… VII
符號說明 ……………………………………………………………………… X
第一章 緒論
1-1 背景與動機 ……………………………………………………… 1
1-2 文獻回顧 ………………………………………………………… 2
1-3 研究目的 ………………………………………………………… 9
1-4 本文架構 ………………………………………………………… 9
第二章 研究方法與水工模型試驗
2-1 新型態的漂沙量測研究方法 …………………………………… 11
2-2 實驗儀器及架設 ………………………………………………… 12
2-3 底床材料及佈置 ………………………………………………… 17
2-4 造波條件 ………………………………………………………… 19
2-5 實驗步驟 ………………………………………………………… 22
第三章 物理特性量測與分析
3-1 影像處理系統 …………………………………………………… 24
3-1-1 影像座標系統 …………………………………………… 24
3-1-2 影像處理及分析方法 …………………………………… 31
3-1-3 資料處理流程 …………………………………………… 34
3-2 波浪分析 ………………………………………………………… 37
3-3 資料結果檢驗 …………………………………………………… 43
3-4 單一波浪啟動沙量的計算 ……………………………………… 47
3-5 物理參數選擇 …………………………………………………… 49
3-5-1 碎波渦流係數 …………………………………………… 49
3-5-2 碎波剪力參數 …………………………………………… 49
3-5-3 向、離岸漂沙傳輸率 …………………………………… 51
第四章 單一波浪啟動的漂沙量
4-1 單位時間啟動沙量 ……………………………………………… 53
4-2 啟動沙量隨時間變化特性 ……………………………………… 55
4-3 啟動沙量與碎波渦流係數關係 ………………………………… 58
4-4 啟動沙量與碎波剪力參數關係 ………………………………… 60
4-5 啟動沙量與碎波形態 …………………………………………… 62
4-6 啟動沙量與碎波能通量 ………………………………………… 63
4-7 半週期底移質向、離岸漂沙傳輸率 …………………………… 64
第五章 啟動沙層厚度的向離岸變化
5-1 底床剖面線記錄 ………………………………………………… 66
5-2 啟動沙層厚度分佈特性 ………………………………………… 69
第六章 結論與建議
6-1 結論 ……………………………………………………………… 74
6-2 建議 ……………………………………………………………… 75
參考文獻 ……………………………………………………………………… 76
附錄A 延時波浪反射率分佈圖
坡度1/60 ……………………………………………………………… A-1
坡度1/45 ……………………………………………………………… A-3
坡度1/30 ……………………………………………………………… A-6
附錄B 底床剖面線記錄
坡度1/30 ……………………………………………………………… B-1
坡度1/45 ……………………………………………………………… B-10
坡度1/60 ……………………………………………………………… B-22
附錄C 平衡剖面迴歸線
坡度1/30 ……………………………………………………………… C-1
坡度1/45 ……………………………………………………………… C-6
坡度1/60 ……………………………………………………………… C-11
參考文獻 References
1. Abdel-Aziz, Y.I., & Karara, H.M. 1971. Direct linear transformation from comparator coordinates into object space coordinates in close-range photogrammetry. Proc. of the Symposium on Close-Range Photogrammetry, 1-18.
2. Anderson, H.W. 1971. Relative contributions of sediment from source areas, and transport processes. Proc. of a Symposium – Forest Land Uses and Stream Environment, 55-63.
3. Antsyferov, S.M. & Kosyan, R.D. 1980. Sediments suspended in stream flow. J. Hydraul. Engng. 106, 313–330.
4. Bagnold, R.A. 1956. Flow of cohesionless grains in fluids. Phil. Trans. R. Soc. London, A249, 235–297.
5. Bagnold, R.A. 1963. Beach and nearshore process - part 1 mechanics of marine sedimentation. In The sea - ideas and observations on progress in the study of the sea. (ed. M. N. Hill), 3, 507–528. Interscience Wiley.
6. Bailard, J.A. 1981. An energetics total load sediment transport model for a plane sloping beach. J. Geophys. Res., 86, 10938–10954.
7. Bailard, J.A. & Inman, D.L. 1979. A reexamination of bagnolds granular-fluid model and bedload transport equation. J. Geophys. Res., 84, 7827–7833.
8. Bonnefille, R. 1963. Essais de synthese des lois de debut d'entrainment des sediment sous l'action d'un courant en regime uniform. Bull. Du CREC, 5, Chatou.
9. Bowen, A.J. and Inman, D.L. 1966. Budget of littoral sands in the vicinity of point Arguello, California, U.S. Army CERC Tech., Memo. No. 19, 56p.
10. Brenninkmeyer, B.M. 1975. Frequency of sand movement in the surf zone. Proc. 14th Conf. on Coastal Eng., 812–827.
11. Buffington, J., Montgomery, D., 1997. A systematic analysis of eight decades of incipient motion studies, with special reference to gravel bed rivers. Water Resour. Res. 33 (8), 1993–2029.
12. Buffington, J.M., 1999. The legend of A. F. Shields. J. Hydraul. Eng. 125 (4), 376–387.
13. Buscombe, D., Masselink, G., 2006. Concepts in gravel beach dynamics. Earth Science Reviews, 79, 33–52.
14. CERC (Coastal Engineering Research Center) 1977. 3rd edn. U.S. Army Corps of Engineers.
15. Coleman, N.L. 1981. Velocity profiles with suspended sediment. J. Hydraul. Res., 19, 211–229.
16. Coleman, N.L. 1986. Effects of suspended sediment on the open-channel velocity distribution. Water Resour. Res., 22, 1377–1384.
17. Courtois, G. & Monaco, A. 1969. Radioactive methods for the quantitative determination of coastal drift rate. Marine Geol., 7, 183–206.
18. Courtois, G. & Sauzay, G. 1966. Les methods de biland des taux de comptage de traceurs radioactifs appliqus a la mesure des debits massiques charriage. La Houille Blanche, 3, 279–284.
19. Dean, R.G. 1995. Cross-Shore Sediment Transport Processes, 475p. World Scientific.
20. Einstein, H.A. 1950. The bedload function for sediment transportation in open channel flows. In Soil Cons. Serv., 1026.
21. Gibbs, R.J., Mathews M.D. & Link D.A. 1971. The relationship between sphere size and settling velocity. J. Sediment Petrology, 41, 7-18.
22. Goda, Y. 1975. Irregular wave deformation in the surf zone. Coast Eng. In Japan 18, 13–26.
23. Hager, W.H., Oliveto, G., 2002. Shields' entrainment criterion in bridge hydraulics. J. Hydraul. Eng., 128 (5), 538–542.
24. Hino, M. 1963. Turbulent flow with suspended particles. J. Hydraul. Res. 89, 161–185.
25. Hsu T.W. & Jan C.D. 1998. Calibration of Businger-Arya type of eddy viscosity of model’s parameter. J. of Waterway, Port, Coastal, and Ocean Eng., 125, 5, 281-284.
26. Hsu T.W., Tseng I.F. & Lee C.P. 2006. A new shape function for bar-type beach profile. J. of Coastal Res., 22, 3, 728-736.
27. Itakura, T. & Kishi, T. 1980. Open channel flow with suspended sediments. J. Hydraul. Eng., 106.
28. Jonsson, I.G. 1966. Wave doundary layers and friction factors. Proc. 10th Conf. on Coastal eng., 127-148
29. Kachel, N.B. & Sternberg, R.W. 1971. Transport of bedload as ripples during and ebb current. Marie Geol., 10, 229–244.
30. Kraus, N.C., 1985. Field experiments on vertical mixing of sand in the surf zone. J. of Sedimentary Petrology, 55, 3–14.
31. Komar, P.D. 1971. The mechanics of snad transport on beaches. J. Geophys. Res.,76, 713–721.
32. Komar, P.D. & Inman, D.L. 1970. Longshore sand transport on beaches. J. Geophys. Res., 75, 5914–5927.
33. Madsen, O.S. 1991. Mechanics of cohesionless sediment transport in coastal waters. Proc. Coastal Sediments 91'., 15–27.
34. Madsen, O.S. & Grant, W.D. 1976. Quantitative description of sediment transport by waves. Proc. 15th Conf. on Coastal Eng., 1093–1112.
35. Mansard, E.P.D. & Funke, E.R. 1980. The measurement of incident and reflected spectra using a least squares method. Proc. of the 17th Conf. on Coastal Eng., 154–172.
36. Mantz, P., 1977. Incipient transport of fine grains and flakes by fluids—extended Shields diagram. J. Hydraul. Div., 103 (6), 601–615.
37. McLean, S.R. 1983. Turbulence and sediment transport measurements in a north sea tidal inlet (the jade). In North Sea Dynamics (ed. J. Sundermann & W. Lenz), 436–452. Springer-Verlad.
38. Mctigue, D.F. 1981. Mixture theory of suspended sediment transport. J. Hydraul. Eng., 107, 659–673. Nielsen, P. 1992 World Scientific.
39. Nielsen, P. 1995. Suspended sediment concentration profiles. Appl. Mech. Rev., 48, 564–569.
40. NOAA. 2005. Population trends along the coastal United States: 1980-2008. Coastal Trends Report Series.
41. Patrick D.A. & Wiegel R.L. 1954. Amphibian tractors in the Surf. Conf. Ships Waves 1st, 397.
42. van Rijn, L.C. 1984a. Sediment transport, part I: Bed load transport. J. Hydraul. Eng., 110, 1431–1456.
43. van Rijn, L.C. 1984b. Sediment transport, part II: Suspended load transport. J. Hydraul. Eng., 110, 1613–1641.
44. Van Rijn, L.C., 1993. Principles of Sediment Transport in Rivers, Estuaries and Coastal Seas. Amsterdam, Aqua Publications.
45. Rouse, H. 1936. Modern conceptions of the mechanics of fluid turbulence. ASCE Trans., 102, 463–543.
46. Saini S., Jackson N.L.,Nordstrom K.F., 2009. Depth of activation on a mixed sediment beach, Coastal Eng., 56, 788-791.
47. SIO (Scripps Institution of Oceanography) 1947. A statistical study of wave conditions at five sea localities along the california coast. In Wave Report, 68, p. 34. Univ. of California.
48. Sheilds, A., 1936. Anwendung der Ahnlichkeitsmechanik und Turbulenzforschung auf Geschiebebewegung. Mitteilungen der Preuss. Versuchsanst. f. Wasserbau u. Schiffbau, Heft 26, Berlin.
49. Sheppard, D.M. & Renna, R. 2005. Florida Bridge Scour Manual. Florida Department of Transportation, 605 Suwannee Street, Tallahassee, FL 32399-0450.
50. Soulsby R.L. & Damgaard J.S. 2005. Bedload sediment transport in coastal waters. Coastal Eng., 52, 673-689.
51. Swart, D.H. 1974. Offshore sediment transport and equilibrium beach profiles. Delft Hydr. Lab Publ., 131.
52. Wang, C.C. & Cheng, M.S. 2007. Nonmertirc camera calibration for underwater laser scanning system. J. Ocean Eng. 32, 383–399.
53. Watanabe, A., Rihe Y., & Horikawa K. 1980. Beach profiles and on-offshore sediment transport. Proc. 17th Conf. on Coastal Eng., 1106-1121.
54. Watts, G.M. 1953. A study of sand movement at south lake worth inlet. In Erosion board Tech. Memo., 42, 24. U.S. Army Corps of Eng.
55. Willis, J.C. 1979. Suspened load from error-function models. J. Hydraul. Eng., 105, 801–816.
56. Wilson, K.C. 1966, Bed-load transport ate height share-stress. J. Hydraul. Eng., 6, 49–59.
57. 黃國書,1995,「波浪作用下沙漣之形成與流場運動」,國立成功大學水利及海洋工程研究所,博士論文。
58. 曾以帆,1997,「沙洲型海灘剖面形狀函數之研究」,國立中山大學海洋環境研究所,碩士論文。
59. 許泰文、廖建明、林毅政,1998,「暴風型海灘平衡剖面預測模式研究」,中國土木水利工程學刊,第十卷,第二期,第271~278頁。
60. 李濟宇,2006,「斜坡上砂層移動與碎波特性之實驗研究」,國立中山大學海洋環境及工程研究所,碩士論文。
61. 李政達,2008,「波流場中質點運動特性之試驗研究」,國立中山大學海洋環境及工程研究所,碩士論文。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code