Responsive image
博碩士論文 etd-0814112-215746 詳細資訊
Title page for etd-0814112-215746
論文名稱
Title
基因槍內液膜霧化之有限元素模擬
Finite Element Simulation of the Atomization of Liquid Membrane in Gene Gun
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
85
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-16
繳交日期
Date of Submission
2012-08-14
關鍵字
Keywords
計算流體力學、文氏管、基因槍、霧化、醫療美容輸送設備
Computational fluid dynamics, Venturi tube, Gene gun, Atomization, Medical beauty delivering device
統計
Statistics
本論文已被瀏覽 5703 次,被下載 1322
The thesis/dissertation has been browsed 5703 times, has been downloaded 1322 times.
中文摘要
近年來,隨著醫療之進步,醫療美容的市場需求逐年升高,加上奈米技術不斷的推陳出新,使得奈米醫療技術逐漸成為近年來醫療生技發展的重要項目。但要使產品達到一定成效,須將其輸入至皮膚內。傳統醫療美容設備大部分都是屬於接觸式或侵入式的器材,這些器材可能會有感染之疑慮。為防止上述狀況產生,現今醫美業者致力於研發非接觸式的醫學美容輸送設備-基因槍。此設備係以高壓氮氣為動力,將待注射品之薄膜霧化,將其送入皮膚之真皮層。

本研究利用計算流體力學軟體,進行基因槍內文氏管之有限元素法模擬模型建立,再透過軟體輔助,分析其管內外流體之流速與霧化情形。本研究成功地建構出多相流混合霧化流程之有限元素模擬機制,並探討了文氏管的幾何參數變化對薄膜霧化效果之影響,所得之研究結果可有效縮短業者開發所需的成本與時間。
Abstract
In recent years, with advances in medical treatment, the demand of medical beauty market has increased year by year. With the continuous innovation of nanotechnology, medical technology with nanometer level is becoming the one of the most important issue of the development of medical biotechnology in recent years. In order to make the products effective, the products have to be transported into the human skin. In traditional medical treatments, the devices of contacting type or invading type were adopted, and might cause some infected problems. To avoid these situations, some medical companies have developing the non-contact type device- gene gun. This device use nitrogen as motive force to atomize the thin film of the injection products, then delivering these products to derma.

This research utilizes computational fluid dynamics software to build the FEM simulation model of Venturi tube inside of a gene gun. Then, analyzing the speed and atomization of fluid which inside or outside of Venturi tube. A FEM simulated mechanism for the atomization of multiphase flow was constructed in this research successfully. The effects of variations of some geometric parameters of Venturi tube on the atomization of thin film were studied also. The obtained results can shorten cost and time in relevant development.
目次 Table of Contents
摘要 i
Abstract ii
目錄 iii
表目錄 v
圖目錄 vi
第一章 緒論 1
1.1 前言 1
1.2 基因槍背景介紹 2
1.3 文獻回顧 4
1.3.1 現有基因槍介紹及比較 4
1.3.2 霧化機制 6
1.4 本文架構 8
第二章 研究方法 15
2.1 軟體介紹 15
2.1.1 Fluent介紹 15
2.1.2 Gambit介紹 17
2.2 基礎理論 19
2.2.1 文丘里效應與賀歇爾式標準文氏管 19
2.2.2 流體體積法 20
2.2.3 文氏管內流場之氣體動力學分析 21
2.3 模型建立及相關設定 22
2.3.1模型建立及網格劃分 23
2.3.2 邊界條件及相關假設 24
第三章 結果與討論 34
3.1 收斂性分析 34
3.1.1 時間間隔之收斂性分析 34
3.1.2 疊代因子之收斂性分析 36
3.2 驗證 36
3.2.1 驗證文獻內容介紹 36
3.2.2 驗證文獻之相關參數 37
3.2.3 驗證比較 38
3.3 模擬結果之流場分析 38
3.3.1文氏管內流場相關參數之分析探討 39
3.3.2 整體流場之分析探討 42
3.4 模擬結果之霧化場說明 43
3.5 相關參數影響 46
3.5.1 入口壓力改變造成之影響 46
3.5.2 漸擴管管徑比改變造成之影響 48
第四章 結論與未來展望 69
4.1 結論 69
4.2 未來展望 69
參考文獻 70
參考文獻 References
1. A.G. Tkachenko, H. Xie, D. Coleman, W. Glomm, J. Ryan, M.F. Anderson, S. Franzen, and D.L. Feldheim, “Multifunctional gold nanoparticle-peptide complexes for nuclear targeting”, Journal of the American Chemical Society, 2003, Vol.125, pp.4700-4701
2. G.F. Paciotti, L. Myer, D. Weinreich, D. Goia, N. Pavel, R.R. McLaughlin, and L. Tamarkun, “Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery”, Drug Delivery, 2004, Vol.11, pp.169-183
3. T.W. Chou, S. Biswas, and S. Lu, “Gene delivery using physical methods”, Gene Delivery to Mammalian Cells, 2004, Vol.1, pp.147-163
4. J.C. Sanford, T.M. Klein, E.D. Wolf, and N. Allen, “Delivery of substances into cells and tissues using a particle bombardment process”, Particulate Science and Technology, 1987, Vol.5, Issue 1, pp.27-37
5. S.A. Johnson, “Biolistic transformation:microbes to mice”, Natural, 1990, Vol.346, pp.776-777
6. J.J. Finer, P. Vain, M.W. Jones, and M.D. McMullen, “Development of the particle inflow gun for DNA delivery to plant cells”, Plant Cell Reports, 1992, Vol.11, pp.323-328
7. P. Vain, N. Keen, J. Murillo, C. Rathus, C. Nemes, and J.J. Finer, “Development of the particle inflow gun”, Plant Cell Tissue and Organ Culture, 1993, Vol.33, pp.237-246
8. BioRad, “Helios Gene Gun System”, BioRad Laboratories, 1996
9. D.X. Chen, R.L. Endres, C.A. Erickson, K.F. Weis, M.W. McGregor, Y. Kawaoka, and L.G. Payne, “Epidermal immunization by a needle-free powder delivery technology: immunogenicity of influenza vaccine and protection in mice”, Nature Medicine, 2000, Vol.6, pp.1187–1190.
10. W.A. Harwood, S.M. Ross, P. Cilento, and J.W. Snape, “The effect of DNA/gold particle preparation technique, and particle bombardment device, on the transformation of barley(Hordeum vulgare)”, Euphytica, 2000, Vol.111, pp.67-76
11. G.B. Lesinski, S.L. Smithson, N. Srivastava, D.X. Chen, G. Widera, and J. Westerink, “A DNA vaccine encoding a peptide mimic of streptococcus pneumoniae serotype 4 capsular polysaccharide induces specific anti-carbohydrate antibodies in Balb/c mice”, Vaccine, 2001, Vol.19, pp.1717–1726.
12. C.Y. Kao, S.H. Huang, and C.M. Lin, “A low pressure gene gun for genetic transformation of maize(Zea mays L.)”, Plant Biotechnology Reports, 2008, Vol.2, pp.267-270
13. C.C. Lin, M.C. Yen, C.M. Lin, S.S. Huang, H.J. Yang, N.H. Chow, and M.D. Lai, “Delivery of noncarrier naked DNA vaccine into the skin by supersonic flow induces a polarized T helper type 1 immune response to cancer”, The Journal of Gene Medicine, 2008, Vol.10, pp.679-689
14. WEALTEC, “In vivo plant experiment via GDS-80”, Application Note 11,2010
15. WEALTEC, “Diversity of plant applications with GDS-80 Accessories”, Application Note 12,2010
16. C.D. Oneto, E. Bossio, G. Gonzalez, P. Faccio, and D. Lewi, “High and low pressure gene gun devices give similar transformation efficiencies in maize calluses”, African Journal of Plant Science, 2010, Vol.4, pp.217-225
17. BioRad, “The Helios gene gun system revolutionizes gene delivery”, BioRad Laboratories, 2010
18. L. Rayleigh, “On the instability of jets”, Proceedings of London Mathematical Society, 1879, Vol.10, pp.4-13
19. C. Weber, “Zum zerfall eines flussigkeitsstrahles (On the disruption of liquid jets)”, Mathematics Mechanics, 1931, Vol.11, pp.136
20. P.H. Schweitzer, ” Mechanism of disintegration of liquid jets”, Journal of Applied Physics, 1937, Vol.8, pp. 513-521
21. M.C. Yuen, “Non-linear capillary instability of a liquid jet”, Journal of Fluid Mechanics, 1968, Vol.33, pp.151-163
22. A.H. Lefebvre, “Fuel effects on gas turbine combustion- ignition, stability, and combustion efficiency”, Journal of Engineering for Gas Turbines and Power, 1985, Vol.107, pp.24-37
23. C.M. Reeves, and A.H. Lefebvre, “Fuel effect on aircraft combustor emissions”, ASME Paper 86-GT-212, 1985
24. K.K. Rink, and A.H. Lefebvre, “Influence of fuel drop size and combustor operating conditions on pollutant emissions”, Society of Automotive Engineers Paper 861541, 1986
25. R.D. Reitz, K.J. Wu, and F.V. Bracco, “Measurements of drop size at the spray edge near the nozzle in atomizing liquid jets”, Physics of fluids, 1986, Vol.29, pp.941-951
26. R.D. Reitz, “Modeling atomization process in high-pressure vaporizing sprays”, Atomization and Spray Technology, 1987, Vol.3, pp.309-337
27. A.H. Lefebvre, “Atomization and sprays”, Hemisphere publishing corporation, 1989, pp.11-45
28. J. Shinjo, and A. Umemura, “Surface instability and primary atomization characteristics of straight liquid jet sprays”, International Journal of Multiphase Flow, 2011, Vol.37, pp.1294-1304
29. D.J. Jiang, H.F. Liu, W.F. Li, J.L. Xu, F.C. Wang, and X. Gong , “Modeling atomization of a round water jet by a high-speed annular air jet based on the self-similarity of droplet breakup”, Chemical Engineering Research and Design, 2011, Vol.90, pp.185-192
30. J.H. Rupe, “The liquid phase mixing of a pair of impinging streams”, California Institute of Technology, 1953
31. N. Dombrowski, and P.C. Hooper, “The effect of ambient density on drop formation in sprays”, Chemical Engineering Science, 1962, Vol.17, Issue 4, pp.291-305
32. N. Dombrowski, and W.R. Johns, “The aerodynamics instability and disintegration of viscous liquid sheets”, Chemical Engineering Science, 1963, Vol.18, Issue 3, pp.203-214
33. D. Grapper, N. Dombrowski, W.P. Jepson, and A.D. Pyott, “A note on the growth of Kelvin-Helmholtz Waves on thin liquid sheets”, Journal of Fluid Mechanics, 1973, Vol.57, pp.671-672
34. N. Dombrowski, and P.C. Hooper, “A study of sprays formed by two impinging jets”, National advisory committee for aeronautics technical note 3835, 1957
35. N. Ashgriz, W. Brocklehurst, and D. Talley, “Mixing mechanisms in a pair of impinging jets”, Journal of Propulsion and Power, 2001, Vol.17
36. L. Broniarz-Press , M. Ochowiak, J. Rozanski, and S. Woziwodzki, “The atomization of water–oil emulsions”, Experimental Thermal and Fluid Science, 2009, Vol.33, pp.955-962
37. C. Herschel, “The Venturi meter”, Hydraulic engineer and builders iron foundry, Builders iron foundry, 1898
38. V. C. Ting, D.G. Ferguson, E. H. Jones Jr, and S. Caldwell, “Discharge coefficient changes in critical flow venturi nozzles after severe field service”, ASME fluids engineering division summer meeting, Vancouver, Canada, June 22-26, 1997
39. T. Kegel, “Compressible flow effects in subsonic venturis”, 4th International symposium on fluid flow measurement, Denver, USA, June 27-30, 1999
40. T. Kegel, C. Britton, and R. Caron, “A measurement uncertainty considerations when using an array of critical flow venturies”, 46th International instrumentation symposium, Seattle, USA, April 30, 2000.
41. C.W. Hirt, and B.D. Nichols, “Volume of fluid(VOF) method for the dynamics of free boundaries”, Journal of computational physics, 1981, Vol.39,pp.201-225
42. P.Y. Liang, S. Fisher, and Y.M. Chang, “Liquid rocket combustor computer code development”, Journal of propulsion and power, 1986, Vol.2, pp.97-104
43. E. Delnoij, J.A.M. Kuipers, and W.P.M. Swaaij van, “Numerical simulation of bubble coalescence using a volume of fluid model”, 3rd International Conference on Multiphase Flow, Lyon, France, June 8-12, 1998
44. J.D. Anderson Jr, “Fundamentals of Aerodynamics”, 3rd edition, McGraw-Hill, 2001
45. 唐上文、林禮獎、陳彥年、許哲彰、吳峻名、陳維德、吳以德、謝其昌, 醫療美容用氣體動力輸入模組之文氏管流場分析, 中國機械工程學會第二十七屆全國學術研討會論文集, 台北, 台灣, 2010
46. ANSYS FLUENT 12.0, Getting started guide
47. Y. Liu, “Physical-mathematical modelling of fluid and particle transportation for DNA vaccination”, International Journal of Engineering Science, 2006, Vol.44, pp.1037-1049
48. Y. Liu, “Utilization of the venturi effect to introduce micro-particles for epidermal vaccination”, Medical Engineering &Physics, 2007, Vol.29, pp.390-397
49. B.R. Munson, D.F. Young, and T.H. Okiishi, “Fundamentals of Fluid Mechanics”, 5th edition, Wiley, 1998
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code