Responsive image
博碩士論文 etd-0814115-105647 詳細資訊
Title page for etd-0814115-105647
論文名稱
Title
高壓及摻雜效應對鈣錳氧材料的磁性研究
High pressure and doping effect on the magnetic properties of CaMn2O4
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
73
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-06-06
繳交日期
Date of Submission
2015-09-23
關鍵字
Keywords
磁性、壓力、反鐵磁、摻雜、鈣錳氧
Pressure, Magnetic, Doping, Antiferromagnetic, Marokite
統計
Statistics
本論文已被瀏覽 5710 次,被下載 443
The thesis/dissertation has been browsed 5710 times, has been downloaded 443 times.
中文摘要
從先前學長姐的研究成果中發現了很多是尖晶石結構的樣品,在比熱、電性、磁性、超導能帶間都廣泛的被探討,而尖晶石又可以分為許多不同結構,而在壓力下伴隨的結構轉變關係主要有CaMn2O4 (Pbcm)、CaFe2O4 (Pnma)、CaTi2O4(Cmcm)這三種。
CaMn2O4這個樣品雖然在磁性及結構上已有被廣泛的研究,主要是由於Jahn-Teller變形以及Mn-O-Mn鍵結的作用力影響,使它在220K附近時會有相轉變溫度TN,另外的研究也說明施加壓力後的結構會變的更緊密,但是在壓力下的磁性這方面還沒有相關的文獻有結論,剛好實驗室的儀器與資源以及經驗,讓我認為可以進行壓力與摻雜的實驗。
結果說明了壓力增加到17.7 kbar時,TN會以0.487(22) K/kbar的速率往高溫區移動,而摻雜一些原子去改變結構,藉此來觀察反鐵磁相轉變溫度TN 是否會有改變。摻雜Mg及Sr原子的實驗結果顯示出,當摻雜比例越多則雜質越多,但磁性實驗測量的TN並沒有偏移,這部分我們推測可能是摻雜作用改變結構的程度不如直接加壓下來的有效。
Abstract
There are lots of researches in specific hear, magnetic, electronic,
and superconductor band gap about AB2O4 spinel structures in our labor-atory.Many cubic spinel compounds exhibit a structural phase transition under pressure to one of three related orthorhombic structures those of CaMn2O4 (Pbcm),CaFe2O4 (Pnma), and CaTi2O4 (Cmcm).
CaMn2O4 have been widely investigated in magnetic and structure, that shows antiferromagnetic transition TN near 220 K due to the Jahn-Teller distortion and the superexchange interaction with Mn-O-Mn bonding.And the other research exhibits the structure will be more closed but there is no records about the magnetic properties under pressure,so I want to process the experiments on pressure effect and doping effect.
It is found that the TN increases with applying pressure up to 17.7 kbar at a rate of 0.487(22) K/kbar.And doping effect on Mg,the impurity increase with higher ratio of Mg.The magnetic properties experiments
shows there is no shift on TN,we conjecture because the influence of doping effect is smaller than the high pressure effect.
目次 Table of Contents
致謝i
論文摘要ii
Abstractiii
目錄v
圖目錄vi
第一章:簡介1
1.1 反鐵磁材料1
1.2 AB2O4尖晶石結構4
1.3 CaMn2O4系統7
1.4研究動機15
第二章:實驗儀器與方法17
2.1 X-ray粉末繞射分析儀與繞射原理17
2.2 超導量子干涉磁量儀21
2.3 高壓效應元件24
第三章:實驗結果27
3.1 CaMn2O4樣品製備與結構分析27
3.2 Ca1-xMgxMn2O4,X= 0.1-0.3樣品製備與結構分析30
3.3 Ca1-xSrxMn2O4,X= 0.05- 0.2 樣品製備與結構分析36
3.4 CaMn2O4磁性實驗討論與分析.42
3.5 Ca1-xMgxMn2O4磁性實驗討論與分析49
3.6 Ca1-xSrxMn2O4磁性實驗討論與分析52
第四章:結論55
參考文獻57
參考文獻 References
1. N. A. Spaldin, Magnetic Materials Fundamentals and Device Applications. (2003).
2. Hummel, Rolf E. Electronic Properties of Materials, 4th ed (2011).
3. L. Duo, M. Finazzi, and F. Ciccacci, Magnetic Properties of Antiferromagnetic Oxide Materials. (2010).
4. K. L. Wellmon, Antiferromagnetism. (2014).
5. W. H. Bragg, Philos. Mag. 30, 305 (1915).
6. S. Nishikawa, Soc. Tokyo, 8, 199 (1915).
7. K. E. Sickafus and J. M. Wills, J. Am. Ceram. Soc. 82, 3279 (1999).
8. B. P. Uberuaga, D. Bacorisen, R. Smith, J. A. Ball, R. W. Grimes, A. F. Voter, and K. E. Sickafus, Phys. Rev. B 75, 104116 (2007).
9. N. W. Grimes, Phys. Technol., 6, 22 (1975).
10. W. A. Deer, R. A. Howie, and J. Zussman, 'An introduction to the rock-forming minerals', 2nd ed. (1992).
11. W. Y. Ching, S. Aryal, P. Rulis, and W. Schnick, Phys. Rev. B 83, 155109 (2011).
12. V. Kocsis, S. Bord´acs, D. Varjas, K. Penc, A. Abouelsayed, C. A. Kuntscher, K. Ohgushi, Y. Tokura, and I. K´ezsm´arki, Phys. Rev. B 87, 064416 (2013).
13. C. P. Sun, J. -Y. Lin, S. Mollah, P. L. Ho, H. D. Yang, F. C. Hsu, Y. C. Liao, and M. K. Wue, Phys. Rev. B 70, 54519 (2004).
14. P. Kichambare, N. Kijima, H. Honma, S. Ebisu, and S. Nagata, J. Phys. Chem. Sol. 57, 1615, (1996).
15. Y. C. Huang, The Study of Sample Preparation, Magnetic and Dielectric Properties on Zn(Cr1-xVx)2O4, Master’s thesis. (2014).
16. B. L. Lee, Magnetic and dielectric study on spin-frustrated ZnV2O4, Master’s thesis. (2014).
17. Z. Wang, S. K. Saxena, and J. J. Neumeier, J. Solid State Chem. 170,382 (2003).
18. T. Yamanaka, A. Uchida, and Y. Nakamoto, American Mineralogist. 93, 1847 (2008).
19. C. Gaudefroy, G. Jouravsky, and F. Permingeat, Bull. Soc. Fr. Mineral. Cristallogr. 86, 359 (1963).
20. M. M. Couffon, G. Rocher, and J. Protas, C. R. Acad. Sci., Paris, 258, 1847 (1964).
21. G. Lepicard, J. Protas, Bull. Soc. Fr. Min. Cri. 89, 318 (1966).
22. Y. Allain and B. Boucher, J. Phys. Paris. 26, 789 (1965).
23. H. G. Giesber, W. T. Pennington, and J. W. Kolis, Acta. Crystallogr. Sect. C 57,329 (2001).
24. O. Muller, R. Roy, The Major Ternary Structural Families. (1974).
25. V. G. Ivanov, V. G. Hadjiev, A. P. Litvinchuk, D. Z. Dimitrov, B. L. Shivachev, M. V. Abrashev, B. Lorenz, and M. N. Iliev, Phys. Rev. B 89, 184307 (2014).
26. X. W. Wu, H. X. Zhang, X. J. Liu, X. G. Zhang. Chin. Phys. Let. 28, 107101 (2011).
27. J. B. Goodenough, Magnetism and the Chemical Bond. (1963).
28. J. Du, Y. Pan, T. Zhang, X. Han, F. Cheng and Jun Chen, J. Mater. Chem. 22, 20870 (2012)
29. Alan Wu, Ferrimagnetism. (2014).
30. B. D. White, J. A. Souza, C. Chiorescu, J. J. Neumeier, and J. L. Cohn, Phys. Rev. B 79, 104427 (2009).
31. G. A. Slack and R. Newman, Phys. Rev. Lett. 1, 359. (1958).
32. J. S. Zhou and J. B. Goodenough, Phys. Rev. B 66, 052401 (2002).
33. J. L. Cohn and J. J. Neumeier, Phys. Rev. B 66, 100404 (2002).
34. C. Chiorescu, J. J. Neumeier, and J. L. Cohn, Phys. Rev.Lett. 101, 257202 (2008).
35. P. A. Sharma, J. S. Ahn, N. Hur, S. Park, S. B. Kim, S. Lee, J. G. Park, S. Guha, and S. W. Cheong, Phys. Rev. Lett. 93, 177202 (2004).
36. Francisco Javier Manjon, Ion Tiginyanu, and Veaceslav Ursaki. Pressure-Induced Phase Transitions in AB2X4 Chalcogenide Compounds.(2014).
37. W. Massa, Crystal Structure Determination. (1999).
38. F. A. Cotton, G. M. Wilkinson,C. A. Murillo, Advanced Inorganic Chemistry (1999).
39. C. L. Huang. Study of two-gap superconductivity on YNi2B2C, NbSe2, and CeRu2 superconductors, PhD thesis. (2009).
40. S. C. Chen, K. J. Syu, H. H. Sung, W. H. Lee, C. C. Li, and Y. Y. Chen, J. Appl. Phys. 113, 153903 (2013).
41. S. Kumar Panda and In-Ho Jung, J. Am. Ceram. Soc., 97 3328 (2014).
42. L. Malavasi, C. Tealdi, G. Flor, and M. Amboage, Phys. Rev. B 71, 174102 (2005).
43. R. Mnil, J. Phys. Chem. Solids, 28, 2335 (1967).
44. R. Manaila and P. Paysescu, Phys Stat. Sol. 9, 385 (1965).
45. C. B. Azzoni, M. C. Mozzati, L. Malavasi, P. Ghigna, G. Flor, Solid State Communications 119, 591 (2001).
46. C. D. Ling, J. J. Neumeier, and D. N. Argyriou, J. Solid State Chem. 160, 167 (2001).
47. S. Zouari, L. Ranno, A. Cheikh-Rouhou, O. Isnard, M. Pernet, P. Wolfers, and P. Strobel, J. Alloys Compd. 353, 5 (2003).
48. M.H. Whangbo, H. J. Koo, D. Dai, and D. Jung, Inorg. Chem. 41, 3570 (2002).
49. H. A. Jahn and E. Teller, Proc. R. Soc. Lond. A 161, 220 (1973).
50. L. J. Gillie, J. Hadermann, O. Pe´rez, C. Martin, M. Hervieu, and E. Suard, J. Solid State Chem. 177, 3383 (2004).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code