Responsive image
博碩士論文 etd-0814117-062307 詳細資訊
Title page for etd-0814117-062307
論文名稱
Title
氧化鋅/氧化亞銅超晶格薄膜:磁控濺鍍法成長及其物理特性之量測
ZnO/Cu2O Superlattice Thin Films: Growth by Sputtering Deposition and Characterizations of Physical Properties
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
34
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-20
繳交日期
Date of Submission
2017-09-14
關鍵字
Keywords
氧化亞銅、氧化鋅、超晶格、光製螢光、激子
PL, Superlattice, exciton, ZnO, Cu2O
統計
Statistics
本論文已被瀏覽 5653 次,被下載 0
The thesis/dissertation has been browsed 5653 times, has been downloaded 0 times.
中文摘要
利用磁控漸鍍法在c面氧化鋁基板上備製氧化鋅與氧化亞銅之超晶格結構。由於氧化鋅與氧化亞銅容易互相擴散,因此藉由改變氧化亞銅之沉積時間來改變厚度,尋得到較不易擴散的結構。在結構方面,穿透是電子顯微鏡及X光反射率,我們可以得到分層及是否有擴散的情形。而在光學特性上,利用光製螢光我們發現到有聲子共振輔助激子的效應,另外也有反斯托克的現象產生。
Abstract
Superlattices with alternating layers of Cu2O and ZnO have been prepared by magnetron sputtering on (0001)-sapphire (Al2O3) substrates. The Cu2O is easier to diffuse into ZnO so that producing different thickness of each Cu2O layer by controlling the Cu2O deposited time becomes the great point of research. Transmission electron microscopy (TEM) and X-ray reflectivity (XRR) were used to observe the structural properties, the deposition and the diffusion of superlattices. There are some unique properties of energy gap, phonon-assisted resonance exciton and anti-Stoke's process of Cu2O and ZnO superlattices from the optical transitions of photoluminescence spectroscopy.
目次 Table of Contents
I. Introduction 1
II. Experimental 3
III. Results and discussion 4
A. TEM analysis 4
B. XRR and fitting analysis 5
C. Photoluminescence analysis 6
IV. Conclusion 10
V. Reference 11
VI. Appendix 14
A. Experimental 14
B. Results and discussion 15
1. A series 15
2. B series 19
3. C series 20
參考文獻 References
[1] ChakrabortyS, DharaS, RavindranT R, PalS S, KamruddinM, TyagiA K, ChakrabortyS, DharaS, RavindranT R andPalS S 2011 Resonant exciton-phonon coupling in ZnO nanorods at room temperature Resonant exciton-phonon coupling in ZnO nanorods at 32135
[2] LettersA P 2006 Anti-Stokes photoluminescence in ZnO microcrystal 1–4
[3] YoungM, KimS andParkI 2016 Cu 2 O quantum dots emitting visible light grown by atomic layer deposition Phys. B Phys. Condens. Matter 500 4–8
[4] PerngD, HongM, ChenK andChenK 2017 Enhancement of short-circuit current density in Cu 2 O / ZnO heterojunction solar cells J. Alloys Compd. 695 549–54
[5] ElfadillN G, HashimM R, ChahrourK M, QaeedM A andBououdinaM 2015 Superlattices and Microstructures The influence of Cu 2 O crystal structure on the Cu 2 O / ZnO heterojunction photovoltaic performance 85 908–17
[6] LvP, LinL, ZhengW, ZhengM andLaiF 2013 Optik Photosensitivity of ZnO / Cu 2 O thin film heterojunction 124 2654–7
[7] JiangX, LinQ, ZhangM, HeG andSunZ 2015 Microstructure , optical properties , and catalytic performance of Cu 2 O-modified ZnO nanorods prepared by electrodeposition 2–7
[8] YinZ G, ZhangH T, GoodnerD M, BedzykM J, ChangR P H, SunY andKettersonJ B 2005 Two-dimensional growth of continuous Cu2 O thin films by magnetron sputtering Appl. Phys. Lett. 86 1–3
[9] NishiY, MiyataT, MinamiT, NishiY, MiyataT andMinamiT 2015 Effect of inserting a thin buffer layer on the efficiency in n-ZnO / p-Cu2O heterojunction solar cells Effect of inserting a thin buffer layer on the efficiency in n -ZnO / p -Cu 2 O heterojunction solar cells 103
[10] GuoD andJuY 2016 Preparation of Cu 2 O / ZnO p-n junction by thermal oxidation method for solar cell application Mater. Today Proc. 3 350–3
[11] MonakhovEV, BergumK, JensenI T andDiplasS 2016 Epitaxial Strain-Induced Growth of CuO at Cu 2 O / ZnO Interfaces 23552–8
[12] KrammB, LauferA, ReppinD, KronenbergerA, HeringP, PolityA andMeyerB K 2012 The band alignment of Cu 2O/ZnO and Cu 2O/GaN heterostructures Appl. Phys. Lett. 100
[13] SiolS, HellmannJ C, TilleyS D, GraetzelM, MoraschJ, DeuermeierJ, JaegermannW andKleinA 2016 Band Alignment Engineering at Cu2O/ZnO Heterointerfaces ACS Appl. Mater. Interfaces 8 21824–31
[14] LaiY, ChouY, LanY, LuT andWangS 2016 Crossover from polariton lasing to exciton lasing in a strongly coupled ZnO microcavity Sci. Rep. 6 1–7
[15] JonesA M, YuH, SchaibleyJ R, YanJ, MandrusD G, TaniguchiT, WatanabeK, DeryH, YaoW andXuX 2015 Excitonic luminescence upconversion in a two-dimensional semiconductor 6–11
[16] MaragkouM, GrundyA J D, OstatnickýT, LagoudakisP G, MaragkouM, GrundyA J D, OstatnickýT andLagoudakisP G 2014 Longitudinal optical phonon assisted polariton laser Longitudinal optical phonon assisted polariton laser 111110 2008–11
[17] XuS J, XiongS andShiS L 2017 Resonant coupling of bound excitons with LO phonons in ZnO : Excitonic polaron states and Fano interference Resonant coupling of bound excitons with LO phonons in ZnO : Excitonic polaron states and Fano interference 221105
[18] WeiB, JiY, GauvinR, ZhangZ, ZouJ andHanX 2017 Strain Gradient Modulated Exciton Evolution and Emission in ZnO Fibers Sci. Rep. 7 40658
[19] MatsudaT, YokoshiN andIshiharaH 2016 Upconverted photoluminescence induced by radiative coupling between excitons Phys. Rev. B 93 1–11
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.144.17.45
論文開放下載的時間是 校外不公開

Your IP address is 3.144.17.45
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code