Responsive image
博碩士論文 etd-0814117-093921 詳細資訊
Title page for etd-0814117-093921
論文名稱
Title
拉伸溫度對多相中錳鋼拉伸性質及顯微組織的影響
Effect of test temperature on tensile properties and microstructure of a multi-phase medium Mn steel
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
173
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-09-08
繳交日期
Date of Submission
2017-09-14
關鍵字
Keywords
顯微組織、應變誘發相變化、拉伸性質、中錳鋼、拉伸溫度
deformation-induced transformation, medium Mn steel, tensile temperature, microstructure, tensile properties
統計
Statistics
本論文已被瀏覽 5651 次,被下載 0
The thesis/dissertation has been browsed 5651 times, has been downloaded 0 times.
中文摘要
本實驗研究不同拉伸溫度對中錳鋼拉伸性質與顯微組織的影響,實驗發現在拉伸溫度為75℃時有最大的伸長量為85%,其抗拉強度略低於室溫,因此,會有最佳的強延積,且從顯微組織的觀察亦能發現大量的應變誘發麻田散鐵的生成。拉伸溫度為100℃時鋼材的伸長量下降至最低值,此溫度接近鋼材的Md溫度,在100℃時應變誘發麻田散鐵的相變化會減緩,取而代之的是應變誘發變韌鐵的相變化,但其量很少且組織極為細小。拉伸溫度高於150℃以後,鋼材強度持續下降,鋼材的伸長量開始上升,此時應變誘發麻田散鐵不再形成,而應變誘發變韌鐵的量持續上升且組織逐漸粗大。當拉伸溫度達300℃時,應變誘發變韌鐵幾乎不再生成,此時鋼材的伸長量再度下降。
Abstract
The purpose of the study is to know the effect of test temperature on the tensile properties and microstructures of a medium manganese steel. The range of the test temperature is from room temperature to 300℃. The results showed that when tested at 75℃, highest elongation of 85% together with a large amount of deformation-induced martensites were obtained. At 100℃, the amount of deformation-induced martensite was reduced, and replaced by a small amount of deformation-induced bainite, so that caused a significant drop of elongation. When the test temperatures were higher than 150℃, the strength of the steel was reduced, and the elongation of the steel started to rise. When the test temperature was increased to 300℃, no deformation-induced transformation was found and both the tensile strength and elongation of the steel were reduced.
目次 Table of Contents
目錄
論文審定書 i
中文摘要 ii
Abstract iii
目錄 iv
圖目錄 vii
表目錄 xix
一、前言 1
二、文獻回顧 2
2-1麻田散鐵 2
2-1-1麻田散鐵不同相變化溫度之定義 3
2-1-2板狀麻田散鐵(Lath martensite) 4
2-1-3盤狀麻田散鐵(Plate martensite) 4
2-1-4透鏡狀麻田散鐵(Lenticular martensite) 5
2-2TRIP鋼 5
2-2-1 TRIP效應 6
2-2-2 TRIP效應與殘留沃斯田鐵體積分率的關係 6
2-2-3 TRIP鋼相變化過程中的化學及機械驅動能 7
2-2-4 沃斯田鐵預先變形(priordeformation)的TRIP效應 7
2-2-5透過ausforming和其他方法強化試片 8
2-3應力誘發與應變誘發麻田散鐵 8
2-4麻田散鐵的成核機制 9
2-5溫度對TRIP效應的影響 10
2-5-1溫度對TRIP鋼顯微結構變形機構的影響 10
2-5-2溫度對TRIP鋼成核速率的影響 12
2-5-3溫度對TRIP鋼機械性質的影響 14
2-5-4 M_s^σ溫度與TRIP鋼相轉變行為之間的關係 17
2-5-5溫度對疊差能的影響 18
2-5-6合金成份對TRIP鋼相轉變溫度的影響 18
2-5-6溫度與麻田散鐵體積分率的關係 19
2-6拉伸溫度對應變誘發麻散鐵和應變誘發變韌鐵相變化的影響 20
三、研究目的 22
四、實驗方法 23
4-1實驗材料 23
4-2實驗步驟 23
4-3拉伸試驗 23
4-4顯微組織分析 24
4-4-1 掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) 24
4-4-2背向散射電子繞射(Electron Backscattered Scattered Diffraction, EBSD) 24
4-4-3 X光能量散佈光譜儀(Energy dispersive spectrometers,EDS) 25
4-4-4 X-ray繞射分析(X-ray diffraction, XRD)進行試片相分率的分析。 25
五、實驗結果 26
5-1不同拉伸溫度之機械性質 26
5-2拉伸前顯微組織 27
5-3不同拉伸溫度之拉伸後顯微組織 28
5-3-1室溫下拉伸後顯微組織 28
5-3-2 50℃拉伸後顯微組織 28
5-3-3 75℃拉伸後顯微組織 29
5-3-4 100℃拉伸後顯微組織 29
5-3-5 125℃拉伸後顯微組織 30
5-3-6 150℃拉伸後顯微組織 30
5-3-7 175℃拉伸後顯微組織 30
5-3-8 255℃拉伸後顯微組織 31
5-3-9 300℃拉伸後顯微組織 31
5-4相分率分析 32
5-5晶粒尺寸 33
5-6 EDS成份分析 34
六、討論 35
6-1不同拉伸溫度下拉伸後EBSD部份區域未解出之可能原因 35
6-2各拉伸溫度下之變形組織 38
6-3各溫度拉伸性質與顯微組織之間的關係 40
七、 結論 42
八、參考文獻 43
參考文獻 References
八、參考文獻
[1] J. Zrnik, I. Mamuzic, and S. V. Dobatkin, "Recent progress in high strength low carbon steels," Metalurgija, vol. 45, p. 323, 2006.
[2] J. Talonen and H. Hänninen, "Formation of shear bands and strain-induced martensite during plastic deformation of metastable austenitic stainless steels," Acta Materialia, vol. 55, p. 6108, 2007.
[3] S. Chatterjee, "Transformations in TRIP-assisted Steels: Microstructure and Properties," Darwin College, University of Cambridge, 2006.
[4] i. A. K. J.W. Christian, R.B. Nicholson (Eds.), Strengthening Methods in Crystals, Wiley, New York, p. 261, 1971.
[5] G. Krauss, "Martensite in steel: strength and structure," Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, vol. 273, p. 40, 1999.
[6] G. Haidemenopoulos and A. Vasilakos, "Modelling of austenite stability in low-alloy triple-phase steels," Steel research, vol. 67, p. 513, 1996.
[7] B. C. De Cooman, "Structure-properties relationship in TRIP steels containing carbide-free bainite," Current Opinion in Solid State & Materials Science, vol. 8, p. 285, 2004.
[8] H. Kitahara, R. Ueji, N. Tsuji, and Y. Minamino, "Crystallographic features of lath martensite in low-carbon steel," Acta Materialia, vol. 54, p. 1279, 2006.
[9] A. Shibata, S. Morito, T. Furuhara, and T. Maki, "Substructures of lenticular martensites with different martensite start temperatures in ferrous alloys," Acta Materialia, vol. 57, p. 483, 2009.
[10] V. F. Zackay, E. R. Parker, D. Fahr, and R. Busch, "The enhancement of ductility in high-strength steels," ASM Trans Quart, vol. 60, pp. 252, 1967.
[11] I. amura, "Deformation-induced martensitic transformation and transformation-induced plasticity in steels," Metal Science, vol. 16, p. 245, 1982.
[12] T. Maki, H. Onodera, and I. Tamura, "Trip-effect in Fe-Ni-Cr alloy," J. Soc. Mater. Sci. Jpn, vol. 24, p. 150, 1975.
[13] J. R. Patel and M. Cohen, "Criterion for the action of applied stress in the martensitic transformation," Acta Metallurgica, vol. 1, p. 531, 1953.
[14] D. Fahr, "Stress- and strain-induced formation of martensite and its effects on strength and ductility of metastable austenitic stainless steels," Metallurgical Transactions, vol. 2, p. 1883, 1971.
[15] P. C. Maxwell, A. Goldberg, and J. C. Shyne, "Stress-Assisted and strain-induced martensites in FE-NI-C alloys," Metallurgical Transactions, vol. 5, p. 1305, 1974.
[16] H. N. Byun TS, Farrell K., "Temperature dependence of strain hardening and plastic instability behaviors in austenitic stainless steels," Acta Mater, vol. 52, p. 3889, 2004.
[17] M. D. Huang GD, Krauss G., "Martensite formation, strain rate sensitivity, and deformation behavior of type 304 stainless steel sheet," Metall Trans A vol. 20, p. 1239, 1989.
[18] P. A. Lecroisey F, "Martensitic transformations induced by plastic deformation in the Fe-Ni-Cr-C system," Metall Trans, vol. 3, p. 387, 1972.
[19] N. P. Talonen J, Pape G, Ha¨nninen H. , Metall Mater Trans A, vol. 36, p. 421, 2005.
[20] T. T. Talonen J, Ha¨nninen H., "Effect of temperature on tensile behaviour and microstructural evolution of nitrogen alloyed austenitic stainless steel.," In: Dong H, Su J, Speidel M, editors. Proceedings of international conference on high nitrogen steels HNS2006. Jiuzhaigou, China: Metallurgical Industry Press, p. 52, 2006.
[21] B. TS., "On the stress dependence of partial dislocation separation and deformation microstructure in austenitic stainless steels," Acta Mater vol. 51, p. 3063, 2003.
[22] D. Rafaja, C. Krbetschek, C. Ullrich, and S. Martin, "Stacking fault energy in austenitic steels determined by using in situ X-ray diffraction during bending," Journal of Applied Crystallography, vol. 47, p. 936, 2014.
[23] J. Kim and B. De Cooman, "On the stacking fault energy of Fe-18 Pct Mn-0.6 Pct C-1.5 Pct Al twinning-induced plasticity steel," Metallurgical and Materials Transactions A, vol. 42, p. 932, 2011.
[24] L.Remy and A. Pineau, "Twinning and strain-induced fcc→ hcp transformation on the mechanical properties of Co Ni Cr Mo alloys," Materials Science and Engineering, vol. 26, p. 123, 1976.
[25] K. Sato, M. Ichinose, Y. Hirotsu, and Y. Inoue, "Effects of deformation induced phase transformation and twinning on the mechanical properties of austenitic Fe-Mn-Al alloys," ISIJ international, vol. 29, p. 868, 1989.
[26] S. Martin, S. Wolf, U. Martin, L. Krüger, and D. Rafaja, "Deformation mechanisms in austenitic TRIP/TWIP steel as a function of temperature," Metallurgical and Materials Transactions A, vol. 47, p. 49, 2016.
[27] J. Venables, "The martensite transformation in stainless steel," Philosophical Magazine, vol. 7, p. 35, 1962.
[28] G. Olson and M. Cohen, "Kinetics of strain-induced martensitic nucleation," Metallurgical transactions A, vol. 6, p. 791, 1975.
[29] T. Angel, "Formation of martensite in austenitic stainless steels," J. Iron Steel Inst., vol. 177, p. 165, 1954.
[30] T. Suzuki, H. Kojima, K. Suzuki, T. Hashimoto, and M. Ichihara, "An experimental study of the martensite nucleation and growth in 18/8 stainless steel," Acta Metallurgica, vol. 25, p. 1151, 1977.
[31] G. Stone and G. Thomas, "Deformation induced alpha and epsilon martensites in Fe-Ni-Cr single crystals," Metallurgical and Materials Transactions B, vol. 5, p. 2095, 1974.
[32] I. Tamura and T. Maki, "Toward improved ductility and toughness, Climax Mo," Dev. Co.(Japan), Tokyo, vol. 185, 1971.
[33] I. Tamura, T. Maki, and H. Hato, "Morphology of strain-induced martensite and the transformation-induced plasticity in Fe-Ni and Fe-Cr-Ni alloys," Trans. Iron and Steel Inst. Jap., 1970.
[34] K.I. Sugimoto, M. Kobayashi, and S.I. Hashimoto, "Ductility and strain-induced transformation in a high-strength transformation-induced plasticity-aided dual-phase steel," Metallurgical Transactions A, vol. 23, p. 3085, 1992.
[35] J. A. Jiménez, M. Carsí, O. A. Ruano, and G. Frommeyer, "Effect of testing temperature and strain rate on the transformation behaviour of retained austenite in low-alloyed multiphase steel," Materials Science and Engineering: A, vol. 508, p. 195, 2009.
[36] G. B. Olson and M. Azrin, "Transformation behavior of TRIP steels," Metallurgical and Materials Transactions A, vol. 9, p. 713, 1978.
[37] L. Samek, E. De Moor, J. Penning, and B. De Cooman, "Influence of alloying elements on the kinetics of strain-induced martensitic nucleation in low-alloy, multiphase high-strength steels," Metallurgical and Materials Transactions A, vol. 37, p. 109, 2006.
[38] S. S. Hecker, M. G. Stout, K. P. Staudhammer, and J. L. Smith, "Effects of Strain State and Strain Rate on Deformation-Induced Transformation in 304 Stainless Steel: Part I. Magnetic Measurements and Mechanical Behavior," Metallurgical Transactions A, vol. 13, p. 619, 1982.
[39] 詹智宇, "熱處理溫度與時間對多相中錳鋼冷軋板之組織與拉伸性質之影響," 中山大學 材光所 碩士論文, 2016.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.118.227.69
論文開放下載的時間是 校外不公開

Your IP address is 18.118.227.69
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code