Responsive image
博碩士論文 etd-0814117-130852 詳細資訊
Title page for etd-0814117-130852
論文名稱
Title
根據WRF之冪次律型式邊界與質點追蹤法之風場模擬
A WRF-based numerical investigation of wind field by boundary condition with Power law and particle tracking method
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
81
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-08-28
繳交日期
Date of Submission
2017-09-14
關鍵字
Keywords
質點追蹤法、天氣預報模型、冪次定律、地表粗糙度、計算流體力學
Weather Research and Forecasting, Wind profile Power law, Surface Roughness, Particle Tracking Method, Computational Fluid Dynamics
統計
Statistics
本論文已被瀏覽 5693 次,被下載 403
The thesis/dissertation has been browsed 5693 times, has been downloaded 403 times.
中文摘要
中尺度的模擬軟體被廣泛應用在天氣預報和大氣研究的領域,不過在風機架設相關的研究以小尺度模型的解析度較為適當。本研究以計算流體力學(Computational Fluid Dynamics, CFD)分析彰化外海測風塔周圍流場變化,使用中尺度天氣預報模型(Weather Research and Forecasting, WRF)模擬結果作為邊界條件,在WRF缺少的低層以冪次定律(power law)推估,模型中考慮地表粗糙度和紊流濾波器,另外,本研究結合WRF-LES模型與質點追蹤法的邊界型式,預測數分鐘內流場動態行為,最後與量測值比較CFD的模擬結果。
在冪次律邊界條件的模擬,分別使用LES (Large eddy simulation)模型、k-ε (k-epsilon)模型與FBM (Filter-Based Model)進行模擬,模擬結果中各模型在80公尺以上高度風速變化趨勢與WRF相似,在高度50公尺以下LES模型的α值、標準差和相關係數等比k-ε模型接近量測數據。另外當FBM之濾波器尺寸大於10倍網格高度時,FBM模擬結果會與k-ε模型相似,靠近地表的風速由大至小依序為LES、k-ε和FBM模型。質點追蹤法的模擬結果中風速大小接近上游速度而逐漸上升。比較二階質點追蹤法在邊界上風速與一階差異,X和Y方向誤差小於1%,Z方向誤差小於10%。
Abstract
Mesoscale numerical approach has been applied widely for weather prediction and atmospheric research. Nevertheless, microscale model is more appropriate for siting of wind farms. The objective in this study is to analyze offshore wind field in Changhua by coupling a CFD (Computational Fluid Dynamics) solver and boundary condition provided from WRF (weather research and forecasting) beyond 40 m above sea level. The boundary conditions below 40 m were based on power law wind profile with considerations of the surface roughness and filter function. Furthermore, a particle tracking method for the boundary condition has been developed. Furthermore, all of the CFD results have been compared with the measured values.

The results beyond 80 m show good agreement between WRF and CFD, and the correlation coefficient and power law exponent of LES model below 50 m are better than those values predicted by k-ε model. Besides, the result of FBM is similar to that of k-ε model as the filter size is too large. The predicted velocity near the sea level of LES model is apparently faster than that of k-ε model and FBM. As for the particle tracking method, since its upstream velocity near the boundary is faster, the ensuing predicted velocity overruns that by WRF-LES model. The deficiencies between first and second order particle tracking methods are insignificant, and hence the first order scheme is sufficient.
目次 Table of Contents
論文審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
目錄 v
圖目錄 vii
表目錄 ix
符號說明 x
第一章 緒論 2
1.1 前言 2
第二章 文獻回顧 3
2.1 WRF模型 3
2.2 紊流模型 5
2.2.1 k-ε模型 5
2.2.2 LES模型 7
2.2.3 WRF-LES 8
2.3 冪次律(power law)速度分布 10
第三章 研究方法 13
3.1 冪次律邊界風場模擬 15
3.1.1 冪次定律(Power law) 17
3.1.2 Large eddy simulation model 17
3.1.3 Standard k-ε model 18
3.1.4 Filter-Based Model 19
3.1.5 Law of the wall modified for roughness 19
3.2 質點追蹤法 21
第四章 結果與討論 26
4.1 冪次律邊界流場模擬 26
4.1.1 計算指數值α 26
4.1.2 計算域大小測試 29
4.1.3 網格測試 32
4.1.4 LES模型和k-ε模型模擬結果 35
4.1.5 FBM模型模擬結果 41
4.2 質點追蹤法 45
4.2.1 一階質點追蹤法結果 45
4.2.2 二階質點追蹤法 58
第五章 結論與建議 61
參考文獻 63
附錄 69
參考文獻 References
[1] Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Wang, W., & Powers, J. G. (2005). A description of the advanced research WRF version 2. National Center For Atmospheric Research Boulder Co Mesoscale and Microscale Meteorology Div.
[2] Skamarock, W. C., Klemp, J. B., & Dudhia, J. (2001). Prototypes for the WRF (Weather Research and Forecasting) model. In Preprints, Ninth Conf. Mesoscale Processes, J11–J15, Amer. Meteorol. Soc., Fort Lauderdale, FL.
[3] Storm, B., Dudhia, J., Basu, S., Swift, A., & Giammanco, I. (2009). Evaluation of the weather research and forecasting model on forecasting low‐level jets: Implications for wind energy. Wind Energy, 12(1), 81-90.
[4] Chen, F., Yang, X., & Zhu, W. (2014). WRF simulations of urban heat island under hot-weather synoptic conditions: The case study of Hangzhou City, China. Atmospheric research, 138, 364-377.
[5] Hu, X. M., Nielsen-Gammon, J. W., & Zhang, F. (2010). Evaluation of three planetary boundary layer schemes in the WRF model. Journal of Applied Meteorology and Climatology, 49(9), 1831-1844.
[6] Leung, L. R., & Qian, Y. (2009). Atmospheric rivers induced heavy precipitation and flooding in the western US simulated by the WRF regional climate model. Geophysical research letters, 36(3).
[7] Powers, J. G. (2007). Numerical prediction of an Antarctic severe wind event with the Weather Research and Forecasting (WRF) model. Monthly Weather Review, 135(9), 3134-3157.
[8] Kesarkar, A. P., Dalvi, M., Kaginalkar, A., & Ojha, A. (2007). Coupling of the Weather Research and Forecasting Model with AERMOD for pollutant dispersion modeling. A case study for PM10 dispersion over Pune, India. Atmospheric Environment, 41(9), 1976-1988.
[9] Shimada, S., Ohsawa, T., Chikaoka, S., & Kozai, K. (2011). Accuracy of the wind speed profile in the lower PBL as simulated by the WRF model. Sola, 7, 109-112.
[10] Moser, R. D., Kim, J., & Mansour, N. N. (1999). Direct numerical simulation of turbulent channel flow up to Re τ= 590. Physics of fluids, 11(4), 943-945.
[11] Rotta, J. (1951). Statistische theorie nichthomogener turbulenz. Zeitschrift für Physik A Hadrons and Nuclei, 129(6), 547-572.
[12] Launder, B. E., & Spalding, D. B. (1974). The numerical computation of turbulent flows. Computer methods in applied mechanics and engineering, 3(2), 269-289.
[13] Mohammadi, B., & Pironneau, O. (1993). Analysis of the k-epsilon turbulence model.
[14] Rodi, W. (1992). The prediction of free turbulent boundary layers by use of a two-equation model of turbulence. Diss. Imperial College London (University of London).
[15] Patankar, S. V. (1980). Numerical heat transfer and fluid flow,(1980). Hemisphere, New York, 25-73.
[16] Richards, P. J., & Hoxey, R. P. (1993). Appropriate boundary conditions for computational wind engineering models using the k-ϵ turbulence model. Journal of wind engineering and industrial aerodynamics, 46, 145-153.
[17] Richards, P. J., & Norris, S. E. (2011). Appropriate boundary conditions for computational wind engineering models revisited. Journal of Wind Engineering and Industrial Aerodynamics, 99(4), 257-266.
[18] Stathopoulos, T. (2002). The numerical wind tunnel for industrial aerodynamics: Real or virtual in the new millennium?. Wind and Structures, 5(2_3_4), 193-208.
[19] Mathews, E. H. (1987). Prediction of the wind-generated pressure distribution around buildings. Journal of Wind Engineering and Industrial Aerodynamics, 25(2), 219-228.
[20] Franke, J., Hirsch, C., Jensen, A. G., Krüs, H. W., Schatzmann, M., Westbury, P. S., Miles, S. D., Wisse, J. A., Wright, N. G. (2004, May). Recommendations on the use of CFD in wind engineering. In Cost action C (Vol. 14, p. C1).
[21] Zhang, C. X. (1994). Numerical predictions of turbulent recirculating flows with a κ-ϵ model. Journal of Wind Engineering and Industrial Aerodynamics, 51(2), 177-201.
[22] Blocken, B., Stathopoulos, T., & Carmeliet, J. (2007). CFD simulation of the atmospheric boundary layer: wall function problems. Atmospheric environment, 41(2), 238-252.
[23] Hargreaves, D. M., & Wright, N. G. (2007). On the use of the k–ε model in commercial CFD software to model the neutral atmospheric boundary layer. Journal of Wind Engineering and Industrial Aerodynamics, 95(5), 355-369.
[24] Walshe, J. D. (2003). CFD modelling of wind flow over complex and rough terrain. Doctoral dissertation, © John Walshe.
[25] Moeng, C. H., & Sullivan, P. P. (2002). Large-eddy simulation. Encyclopedia of Atmospheric Sciences, 1140, 1150.
[26] Leonard, A. (1975). Energy cascade in large-eddy simulations of turbulent fluid flows. Advances in geophysics, 18, 237-248.
[27] Deardorff, J. W. (1972). Numerical investigation of neutral and unstable planetary boundary layers. Journal of the Atmospheric Sciences, 29(1), 91-115.
[28] Moeng, C. H. (1984). A large-eddy-simulation model for the study of planetary boundary-layer turbulence. Journal of the Atmospheric Sciences, 41(13), 2052-2062.
[29] Stevens, B., Moeng, C. H., Ackerman, A. S., Bretherton, C. S., Chlond, A., de Roode, S., ... & Kirkpatrick, M. P. (2005). Evaluation of large-eddy simulations via observations of nocturnal marine stratocumulus. Monthly weather review, 133(6), 1443-1462.
[30] Moeng, C. H., Sullivan, P. P., Khairoutdinov, M. F., & Randall, D. A. (2010). A mixed scheme for subgrid-scale fluxes in cloud-resolving models. Journal of the Atmospheric Sciences, 67(11), 3692-3705.
[31] Khairoutdinov, M. F., Krueger, S. K., Moeng, C. H., Bogenschutz, P. A., & Randall, D. A. (2009). Large‐eddy simulation of maritime deep tropical convection. Journal of Advances in Modeling Earth Systems, 1(4).
[32] Leblebici, E., Ahmet, G., & Tuncer, I. H. (2013, June). Atmospheric turbulent flow solutions coupled with a mesoscale weather prediction model. In Eccomas special Interest Conference, 3rd South-East European Conference on Computational Mechanics,(Kos Island Greece).
[33] Zajaczkowski, F. J., Haupt, S. E., & Schmehl, K. J. (2011). A preliminary study of assimilating numerical weather prediction data into computational fluid dynamics models for wind prediction. Journal of Wind Engineering and Industrial Aerodynamics, 99(4), 320-329.
[34] Schneiderbauer, S., & Pirker, S. (2010). Resolving unsteady micro-scale atmospheric flows by nesting a CFD simulation into wide range numerical weather prediction models. International Journal of Computational Fluid Dynamics, 24(1-2), 51-68.
[35] Kinbara, K., Iizuka, S., Kuroki, M., & Kondo, A. (2010). Merging WRF and LES models for the analysis of a wind environment in an urban area. In Proceedings of the Fifth International Symposium on Computational Wind Engineering, Chapel Hill, NC, May (pp. 23-27).
[36] Talbot, C., Bou-Zeid, E., & Smith, J. (2012). Nested mesoscale large-eddy simulations with WRF: performance in real test cases. Journal of Hydrometeorology, 13(5), 1421-1441.
[37] Mirocha, J. D., Lundquist, J. K., & Kosović, B. (2010). Implementation of a nonlinear subfilter turbulence stress model for large-eddy simulation in the Advanced Research WRF model. Monthly Weather Review, 138(11), 4212-4228.
[38] Kirkil, G., Mirocha, J., Bou-Zeid, E., Chow, F. K., & Kosović, B. (2012). Implementation and evaluation of dynamic subfilter-scale stress models for large-eddy simulation using WRF. Monthly Weather Review, 140(1), 266-284.
[39] Justus, C. G., & Mikhail, A. (1976). Height variation of wind speed and wind distributions statistics. Geophysical Research Letters, 3(5), 261-264.
[40] Hanna, S. R., Schulman, L. L., Paine, R. J., Pleim, J. E., & Baer, M. (1985). Development and evaluation of the Offshore and Coastal Dispersion Model. Journal of the Air Pollution Control Association, 35(10), 1039-1047.
[41] Hsu, S. A. (1992). An overwater stability criterion for the offshore and coastal dispersion model. Boundary-Layer Meteorology, 60(4), 397-402.
[42] Hsu, S. A., Meindl, E. A., & Gilhousen, D. B. (1994). Determining the power-law wind-profile exponent under near-neutral stability conditions at sea. Journal of Applied Meteorology, 33(6), 757-765.
[43] Touma, J. S. (1977). Dependence of the wind profile power law on stability for various locations. Journal of the Air Pollution Control Association, 27(9), 863-866.
[44] Barthelmie, R. J., Sempreviva, A. M., & Pryor, S. (2010). The influence of humidity fluxes on offshore wind speed profiles. In Annales Geophysicae (Vol. 28, No. 5, pp. 1043-1052).
[45] Wu, J. (1980). Wind-stress coefficients over sea surface near neutral conditions—A revisit. Journal of Physical Oceanography, 10(5), 727-740.
[46] Panofsky, H. A., & Dutton, J. A. (1984). Atmospheric turbulence: models and methods for engineering applications (No. 04; QC880. 4. T8, P3.). Wiley.
[47] Peterson, E. W., & Hennessey Jr, J. P. (1978). On the use of power laws for estimates of wind power potential. Journal of Applied Meteorology, 17(3), 390-394.
[48] Irwin, J. S. (1979). A theoretical variation of the wind profile power-law exponent as a function of surface roughness and stability. Atmospheric Environment (1967), 13(1), 191-194.
[49] Maat, N., Kraan, C., & Oost, W. A. (1991). The roughness of wind waves. Boundary-Layer Meteorology, 54(1), 89-103.
[50] Kudryavtsev, V. N., & Makin, V. K. (2007). Aerodynamic roughness of the sea surface at high winds. In Atmospheric Boundary Layers (pp. 133-147). Springer New York.
[51] Wieringa, J. (1992). Updating the Davenport roughness classification. Journal of Wind Engineering and Industrial Aerodynamics, 41(1-3), 357-368.
[52] Patankar, S. V., & Spalding, D. B. (1972). A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. International journal of heat and mass transfer, 15(10), 1787-1806.
[53] Shaw, W. J., Lundquist, J. K., & Schreck, S. J. (2009). Research needs for wind resource characterization. Bulletin of the American Meteorological Society, 90(4), 535-538.
[54] Johansen, S. T., Wu, J., & Shyy, W. (2004). Filter-based unsteady RANS computations. International Journal of Heat and fluid flow, 25(1), 10-21.
[55] Peng, C. K. (2017). Department of Mechanical and Electro-Mechanical Engineering. Master Thesis
[56] Stull, R. B. (2012).An introduction to boundary layer meteorology (Vol. 13). Springer Science & Business Media.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code