Responsive image
博碩士論文 etd-0814117-181029 詳細資訊
Title page for etd-0814117-181029
論文名稱
Title
超音波-化學雙調理結合凹板式壓濾電脫水技術進行都市下水污泥脫水之效能評估
Performance Evaluation of Sewage Sludge Dewatering by Intergration of Ultrasonic-Chemical Co-conditioning and Electrodewatering Using a Recessed-Plate Filter Press
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
154
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-06
繳交日期
Date of Submission
2017-09-14
關鍵字
Keywords
電脫水、田口式實驗設計、超音波調理、高分子絮凝劑、凹板式壓濾脫水機、都市下水污泥
Ultrasonic treatment, Polymeric flocculent, Taguchi method, Electrodewatering, Recessed plate filter press, Biological municipal sludge
統計
Statistics
本論文已被瀏覽 5688 次,被下載 15
The thesis/dissertation has been browsed 5688 times, has been downloaded 15 times.
中文摘要
本研究嘗試利用超音波/化學調理都市下水污泥,並結合電動力輔助凹板式壓濾脫水系統進行脫水以提升污泥脫水成效。生物污泥經瓶杯試驗後,其單獨絮凝添加劑量及最佳超音波輸入比能量/添加劑量分別為400 mg/L、333 kJ/kg及300 mg/L。之後利用田口式實驗設計法結合正規分析及變異數分析,以最終污泥餅含水率及電動力能耗作為品質特性,進而找出最佳操作條件。上述兩項品質特性所得到之最佳操作條件之試驗組別,其最低污泥餅含水率試驗組別(Test A)之污泥餅含水率及每立方米電脫水濾液所需之電動力能耗分別為65.6±2.4%及110 kWh/m3;最低電動力能耗試驗組別(Test B)之污泥餅含水率及每立方米電脫水濾液所需之電動力能耗分別為75.9±3.9%及40 kWh/m3。綜合言之,本研究利用超音波調理結合電動力輔助凹板式壓濾脫水機之試驗結果證實,超音波調理污泥可明顯提升脫水之能力,且施加電場更可加速污泥脫水效率,在適當的操作條件下,具技術可行性。
Abstract
The objective of this study was to condition the sewage sludge by using the polymeric flocculent and ultrasound, and combine the recessed plate filter press electrodewatering system to evaluate the dewatering performance. Through the jar test, the optimal polymeric flocculent dosage was 400 mg/L and the optimal specific energy input / polymeric flocculent dosage for ultrasonic treatment and flocculoction were 333 kJ/kg and 300 mg/L, respectively. To find out the optimal dewatering conditions for the sludges of concern, an experimental design based on the Taguchi method was adopted. The moisture content of sludge cake, energy consumption were the parameters of concern. Tests A and B were carried out by using the optimal operating conditions, which represented the sludge cakes having the lowest moisture content and the lowest extra energy consumption, respectively. The magnitudes of moisture content for the sludge cake and extra energy consumption for the removed water respectively were given as follows: (1) 65.6±2.4% and 110 kWh/m3 for Test A; and (2) 75.9±3.9% and 40 kWh/m3 for Test B. To summarize, it was obvious that ultrasonic treatment and application of an electric field would enhance the dewatering efficiency of the sewage sludge. It appeared that the electrodewatering process employed in this study was technically feasible for biological sludges.
目次 Table of Contents
謝誌 iii
摘要 iv
Abstract v
目錄 vi
圖目錄 xii
表目錄 xv
照片目錄 xviiii
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
1.3 研究內容與架構 2
第二章 文獻回顧 5
2.1 污泥來源 5
2.2 污泥水分分布 6
2.3 污泥之調理技術 9
2.3.1 物理調理 10
2.3.1.1 超音波處理 11
2.3.2 化學調理 14
2.3.3 生物調理 17
2.3.4 雙重調理 18
2.4 污泥脫水方式 19
2.4.1 傳統污泥脫水 19
2.4.2 改良式污泥脫水 21
2.4.2.1 超音波脫水技術 23
2.5 電動力法 26
2.5.1 電動力技術之現象與原理 27
2.5.2 電滲透脫水 29
2.6 田口式實驗設計法介紹 34
第三章 實驗材料設備與方法 36
3.1 都市下水污泥來源 36
3.2 實驗材料及方法 37
3.2.1 實驗材料 37
3.2.1.1 絮凝劑特性 38
3.2.2實驗設備 39
3.3 研究方法 41
3.3.1 污泥調理 41
3.3.1.1 毛細汲取時間 (Capillary suction time) 44
3.3.1.2 過濾比阻 (Specific resistance to filtration) 46
3.3.2 電動力輔助凹板式壓濾脫水系統 48
3.3.3 田口式實驗設計 48
3.3.3.1 品質特性與控制因子的選擇 48
3.3.3.2 實驗參數選定 51
3.3.3.3 正規分析 54
3.3.3.4 變異數分析 55
3.3.4 其他試驗及分析方法 58
第四章 結果與討論 60
4.1 都市下水污泥基本特性分析 60
4.2 都市下水污泥化學調理 61
4.3 都市下水污泥實驗操作參數及試驗產物之品質分析 64
4.3.1 都市下水污泥脫水試驗之單位濾液量 65
4.3.2 都市下水污泥脫水試驗之濾液pH值 67
4.3.3 都市下水污泥脫水試驗之濾液導電度 69
4.3.4 都市下水污泥脫水試驗之濾液溫度 71
4.3.5 都市下水污泥脫水試驗之電流密度 73
4.3.6 都市下水污泥脫水試驗之樣品回收率表 74
4.3.7 電動力去除水分重量佔總濾液重量之百分比 75
4.4 L8田口式直交表試驗結果 76
4.4.1最低污泥餅含水率之正規分析 80
4.4.2 最低污泥餅含水率之變異數分析 84
4.4.3 最低電動力能耗之正規分析 86
4.4.4 最低電動力能耗之變異數分析 90
4.5 最佳操作組別之驗證試驗 92
第五章 結論與建議 104
5.1 結論 104
5.2 建議 106
參考文獻 107
附錄 124
碩士在學期間發表之學術論文 135
參考文獻 References
英文部分:
American Public Health Association (APHA), "Standard Method 2710G and 2710H," Tests on Sludge (2004).
American Society for Testing and Materials (ASTM), "Standard Practice for Coagulation-Flocculation Jar Test of Water D2035-80," (2003).
Bache, D. H. and E. N. Papavasilopoulos "Viscous behavior of sludge centrate in response to polymer conditioning," Water Research., Vol. 34, No.1, pp.354-358 (2000).
Bagotsky, V. S., "Fundamental of Electrochemistry," John Wiley & Sons, Hoboken, New Jersey, U. S. A. (2006).
Bajgai, T. R., G. V. Raghavan, F. Hashinaga, and M. O. Ngadi, "Electrohydrodynamic drying — A concise overview," Drying Technology, Vol. 24, pp. 905-910 (2006).
Bala-Subramanian, S., S. Yan, R. D. Tyagi, and R. Y. Surampalli, "Extracellular polymeric substances (EPS) producing bacterial strains of municipal wastewater sludge: Isolation, molecular identification, EPS characterization and performance for sludge settling and dewatering," Water Research, Vol. 44, pp. 2253-2266 (2010).
BASF, "Zetag® ULTRA Ultra-high molecular weight cationic flocculants," http://doc.ccc-group.com/spec/456042.pdf, Germany (2013).
Behl, S., B. M. Moudgi, and T. S. Prakash, "Effect of particle size on flocculation," Journal of Colloid and Interface Science, Vol. 158, No. 2, pp. 511-512 (1993).
Bertanza, G., M. Papa, M. Canato, M. C. Collivignarelli, and R. Pedrazzani, "How can sludge dewatering devices be assessed? Development of a new DSS and its application to real case studies," Journal of Environmental Management, Vol. 137, pp. 86-92 (2014).
Bertolini, L., L. Coppola, M. Gastaldi, and E. Redaelli, "Electroosmotic transport in porous construction materials and dehumidification of masonry," Construction and Building Materials, Vol. 23, pp. 254-263 (2009).
Bien, J., and L. Wolny, "Changes of some sewage sludge parameters prepared with an ultrasonic field," Water science and technology, Vol. 36, No.11, pp. 101-106 (1997).
Böhm, N. and W. M. Kulicke, "Optimization of the use of polyelectrolytes for dewatering industrial sludges of various origins," Colloid and Polymer Science, Vol. 275, pp. 73-81 (1997).
Christensen, J. R., P. B. Sorensen, G. L. Christensen, and J. A. Hansen, "Mechanisms for overdosing in sludge conditioning," Journal of Environmental Engineering, Vol. 119, No.1, pp.159-171 (1993).
Chu, C. P., B. V. Chang, G. S. Liao, D. S. Jean, and D. J. Lee, " Observations on changes in ultrasonically treated waste-activated sludge, " Water Research, Vol. 35, No. 4, pp. 1038-1046 (2001).
Citeau, M., J. Olivier, A. Mahmoud, J. Vaxelaire, O. Larue, and E. Vorobiev, "Pressurised electro-osmotic dewatering of activated and anaerobically digested sludges: Electrical variables analysis," Water Research, Vol. 46, pp. 4405-4416 (2012).
Citeau, M., O. Larue, and E. Vorobiev, "Influence of Salt, pH and Polyelectrolyte on the Pressure Electro-Dewatering of Sewage Sludge," Water Research, Vol. 45, No. 6, pp. 2167-2180 (2011).
Curvers, D., K. C. Maes, H. Saveyn, B. De-Baets, S. Miller, and P. Van-Der-Meeren, "Modelling the electro-osmotically enhanced pressure dewatering of activated sludge," Chemical Engineering Science, Vol. 62, pp. 2267-2276 (2007).
Das, K, K. and P. Somasundaran, "Ultra-low dosage flocculation of alumina using polyacrylic acid," Colloids and Surfaces A, Vol. 182, No. 1-3, pp. 25-33 (2001).
Eichholz, C., M. Stolarski, V. Goertz, and H. Nirschl, "Magnetic field enhanced cake filtration of superparamagnetic PVAc-particles," Chemical Engineering Science, Vol. 63, No. 12, pp. 3193-3200 (2008).
Electrokinetic Limited, "Dewatering of sewage sludge," http://www.electrokinetic.co.uk/sewagesludge.htm, England (2015).
Fan, L., M. Zhou, J. Wang, X. Li, and C. Ma, "Dewatering performance of sewage sludge during the thermal compression process," Advanced Materials Research, Vol. 878, pp. 657-662 (2014).
Feng, J., Y. L. Wang, and X. Y. Ji, "Dynamic changes in the characteristics and components of activated sludge and filtrate during the pressurized electro-osmotic dewatering process," Separation and Purification Technology, Vol. 134, pp. 1-11 (2014).

Feng, G., W. Tan, N. Zhong, and L. Liu, "Effects of thermal treatment on physical and expression dewatering characteristics of municipal sludge, " Chemical Engineering Journal, Vol. 247, pp. 223-230 (2014a).
Feng, X., J. Deng, H. Lei, T. Bai, Q. Fan, and Z. Li, "Dewaterability of waste activated sludge with ultrasound conditioning," Bioresource Technology, Vol. 100, No. 3, pp. 1074-1081 (2009).
Gehr, R. and J. G. Henry, "Removal of extracellular material techniques and pitfalls," Water Research, Vol. 17, No. 12, pp. 1743-1748 (1983).
Ghimichi, L., I. Dranca, S. Drangan, T. Lupascu, and A. Maftuleac, "Hydrophobically modified cationic polyelectrolytes," European Polymer Journal, Vol. 37, No. 2, pp. 227-231 (2001).
Glendinning, S., J. Lamont-Black, and C. J. Jones, "Treatment of sewage sludge using electrokinetic geosynthetics," Journal of Hazardous Materials, Vol. 139, pp. 491-499 (2007).
Gogate, P. R., and A. M. Kabadi., "A review of applications of cavitation in biochemical engineering/biotechnology," Biochemical Engineering Journal, Vol. 44, No. 1, pp. 60-72 (2009).
Hassebrauck, M. and G. Ermel, "Two examples of thermal drying of sewage sludge," Water Science and Technology, Vol. 33, No. 12, pp. 235-242 (1996).
Hogg, R., "Flocculation and dewatering," International Journal of Mineral Processing, Vol. 58, No. 1, pp. 223-236 (2000).
Hong, J., J. Hong, M. Otaki, and O. Jolliet, "Environmental and economic life cycle assessment for sewage sludge treatment processes in Japan," Waste Management, Vol. 29, pp. 696-703 (2009).
Khanal, S. K., D. Grewell, S. Sung, and J. Van Leeuwen, "Ultrasound applications in wastewater sludge pretreatment: A review," Critical Reviews in Environmental Science and Technology, Vol. 37, No. 4, pp. 277-313 (2007).
Kovalick, W. W., "Innovative ground-water remediation technologies: publications and conference proceedings 1990-1996," U. S. Environmental Protection Agency Technology Innovation Office, Washington, D. C., U. S.A. (1996).
Kramer, G. and P. Somasundaran, "Conformational behavior of polyelectrolyte complexes at the solid/liquid interface," Langmuir (ACS) publications, Vol. 18, No. 24, pp. 9357-9361 (2002).
Lee, C. H. and J. C. Liu, "Enhance sludge dewaterability by dual polyelectrolytes conditioning," Water Research, Vol. 34, No. 18, pp. 4430-4436 (2000).
Lee, C. H. and J. C. Liu, "Sludge dewaterabilty and floc structure in dual polymer conditioning," Advances in Environmental Research, Vol. 5, No. 2, pp. 129-136 (2001).
Lee, J. E., "Thermal dewatering (TDW) to reduce the water content of sludge," Drying Technology, Vol. 24, pp. 225-232 (2006).
Lee, J. E., J. K. Lee, and H. K. Choi, "Filter press for electrodewatering of waterworks sludge," Drying Technology, Vol. 25, pp. 1649-1657 (2007).
Leonelli, C., and T. J. Mason, "Microwave and ultrasonic processing: now a realistic option for industry," Chemical Engineering and Processing: Process Intensification, Vol. 49, No.9, pp. 885-900 (2010).
Li, B., Q. Y. Lin, and Y. Y. Yan, "Development of solid desiccant dehumidification using electro-osmosis regeneration method for HVAC application," Building and Environment, Vol. 48, pp. 128-134 (2012).
Liu, H., J. Yang, Y. Shi, Y. Li, S. He, C. Yang, and H. Yao, "Conditioning of sewage sludge by Fenton’s reagent combined with skeleton builders, " Chemosphere, Vol. 88, pp. 235-239 (2012).
Ma, D., S. Lin, C. Cui, and J. Zhai, "Application of weak ultrasonic on sludge electro-osmosis dewatering," Environmental technology, pp. 1-25 (2017).
Mahmoud, A., A. Fernandez, T. M. Chituchi, and P. Arlabosse, "Thermally assisted mechanical dewatering (TAMD) of suspensions of fine particles: Analysis of the influence of the operating conditions using the response surface methodology," Chemosphere, Vol. 72, No. 11, pp. 1765-1773 (2008).
Mahmoud, A., J. Olivier, J. Vaxelaire and A. F. A. Hoadley, "Electro-dewatering of wastewater sludge: Influence of the operating conditions and their interactions effects," Water Research, Vol. 45, No. 9, pp. 2795-2810 (2011).
Mahmoud, A., J. Olivier, J. Vaxelaire, and A. F. A. Hoadley, "Advances in mechanical dewatering of wastewater sludge treatment," In: Wastewater Reuse and Management, Sharma, S.K. and R. Sanghi (Eds), Springer, Dordrecht, The Netherlands, pp. 253-303 (2013).
Mahmoud, A., P. Arlabosse, and A. Fernandez, "Application of a thermally assisted mechanical dewatering process to biomass," Biomass and Bioenergy, Vol. 35, No. 1, pp. 288-297 (2011).
Mao, F., X. Han, Q. Huang, J. Yan, and Y. Chi, "Effect of frequency on ultrasound-assisted centrifugal dewatering of petroleum sludge," Drying Technology, Vol. 34, No. 16, pp. 1948-1956 (2016).
Mason, T. J., "Sonochemistry and the environment–Providing a “green” link between chemistry, physics and engineering," Ultrasonics Sonochemistry, Vol. 14, No. 4, pp. 476-483 (2007).
Mok, C. K., "Design and Modelling of Electroosmotic Dewatering," Doctorate Dissertation, Newcastle University, Newcastle upon Tyne, England (2006).
Moody, G. M., "Pre-treatment chemicals," Filtration and Separation, Vol. 32, pp. 329-336 (1995).
Mowla, D., H. N. Tran, and D. Grant-Allen, "A review of the properties of biosludge and its relevance to enhanced dewatering processes," Biomass and Bioenergy, Vol. 58, pp. 365-378 (2013).
Mujumdar, A. S. and H. Yoshida, "Electro-osmotic dewatering (EOD) of bio-materials," Electrotechnologies for extraction from food plants and biomaterials, pp. 121-154 (2009).
Na, S., Y. U. Kim, and J. Khim, "Physiochemical properties of digested sewage sludge with ultrasonic treatment," Ultrasonics Sonochemistry, Vol. 14, No. 3, pp.281-285 (2007).
Navab-Daneshmand, T., R. Beton, R. J. Hill, R. Gehr, and D. Frigon, "Inactivation mechanisms of bacterial pathogen indicators during electrodewatering of activated sludge biosolids," Water Research, Vol. 46, pp. 3999-4008 (2012).
Neis, U., "Ultrasound in water, wastewater and sludge treatment," Sewage Treatment, Vol. 21, pp. 36-39 (2000).
Neppiras, E. A., "Acoustic cavitation," Physics Reports, Vol. 61, pp. 159-251 (1980).
Neyens, E. and J. Baeyens, "A review of thermal sludge pre-treatment processes to improve dewaterability," Journal of Hazardous Materials, Vol. 98, pp. 51-67 (2003a).
Neyens, E. and J. Baeyens, "A review of classic Fenton’s peroxidation as an advanced oxidation technique," Journal of Hazardous Materials, Vol. 98, pp. 33-50 (2003b).
Ng, S. K., A. Plunkett, V. Stojceska, P. Ainsworth, J. Lamont-Black, J. Hall, C. White, S. Glendenning, and D. Russell, "Electrokinetic technology as a low-cost method for dewatering food by-product," Drying Technology, Vol. 29, pp. 1721-1728 (2011).
Pan, Z., A. Campbell, and P. Somasundaran, "Adsorption and conformation in concentrated alumina suspensions," Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 192, No. 1-2, pp. 71-78 (2001).
Parker, P. J., A. G. Collins, and J. P. Dempsey, "Effects of freezing rate, solids content, and curing time on freeze/thaw conditioning of water treatment residuals," Environmental Science and Technology, Vol. 32, No. 3, pp. 383-387 (1998).
Parmar, N., A. Singh, and O. P. Ward, " Enzyme treatment to reduce solids and improve settling of sewage sludge," Journal of Industrial Microbiology & Biotechnology, Vol. 26, No. 6, pp. 383-386 (2001).
Pham, T. T. H., S. K. Brar, R. D. Tyagi, and R. Y. Surampalli, "Ultrasonication of wastewater sludge—Consequences on biodegradability and flowability," Journal of Hazardous Materials, Vol. 16, No. 2, pp. 891-898 (2009).
Pilli, S., P. Bhunia, S. Yan, R. J. LeBlanc, R. D. Tyagi, and R. Y. Surampalli, "Ultrasonic pretreatment of sludge: a review," Ultrasonics Sonochemistry, Vol. 18, No. 1, pp. 1-18 (2011).
Qi, Y., K. B. Thapa, and A. F. A. Hoadley, "Application of filtration aids for improving sludge dewatering properties — A review," Chemical Engineering Journal, Vol. 171, pp. 373-384 (2011).
Radeva T. S., V. Milkova., and I. Petkanchin, "Structure of polyelectrolyte layers on colloidal particles at different ionic strengths," Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 209, No. 2-3, pp. 227-233 (2002).
Roias O. J., M. Ernstsson, R. D. Neuman, and P. M. Claesson, "Effect of polyelectrolyte charge density on the adsorption and desorption behavior on mica," Langmuir, Vol. 18, No. 5, pp. 1604-1612 (2002).
Rokhina, E. V., P. Lens, and J. Virkutyte, "Low-frequency ultrasound in biotechnology: state of the art," Trends in Biotechnology, Vol. 27, No. 5, pp. 298-306 (2009).
Saveyn, H., G. Pauwels, R. Timmerman, and P. van der Meeren, "Effect of polyelectrolyte conditioning on the enhanced dewatering of activated sludge by application of an electric field during the expression phase," Water Research, Vol. 39, No. 13, pp. 3012-3020 (2005).
Smith, J. K. and P. A. Vesilind, "Dilatometric measurement of bound water in waste-water sludge," Water Research, Vol. 29, No. 12, pp. 2621-2626 (1995).
Smythe, M. C. and R. J. Wakeman, "The use of acoustic fields as a filtration and dewatering aid," Ultrasonics, Vol. 38, No. 1-8, pp. 657-661 (2000).
Stolarski, M., B. Fuchs, S. Bogal Kassa, C. Eichholz, and H. Nirschl, "Magnetic field enhanced press-fitration," Chemical Engineering Science, Vol. 61, No. 19, pp. 6395-6403 (2006).
Tanaka, T., K. Fujihara, M. S. Jami, and M. Iwata, "Constant-current electroosmotic dewatering of superabsorbent hydrogel," Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 440, pp. 116-121 (2014).
Tuan, P. A., S. Mika, and I. Pirjo, "Sewage sludge electro-dewatering treatment-A Review," Drying Technology, Vol. 30, No. 7, pp. 791-706 (2012).
Tuan, P.A., and M. Sillanpää, "Migration of ions and organic matter during electro-dewatering of anaerobic sludge," Journal of Hazardous Materials, Vol. 173, pp. 54-61 (2010).
Tyagi, V. K. and S. L. Lo, "Microwave irradiation: A sustainable way for sludge treatment and resource recovery," Renewable and Sustainable Energy Reviews, Vol. 18, pp. 288-305 (2013).
Tyagi, V. K., S. L. Lo, L. Appels, and R. Dewil, "Ultrasonic treatment of waste sludge: A Review on mechanisms and applications," Critical Reviews in Environmental Science and Technology, Vol. 44, No. 11, pp. 1220-1288 (2014).
Vesilind, P. A. and C. C. Hsu, "Limits of sludge dewaterability," Water Science and Technology, Vol. 36, No. 11, pp. 87-91 (1997).
Vesilind, P. A., "The role of water in sludge dewatering," Water Environment Research, Vol. 66, No. 1, pp. 4-11 (1994).
Wakeman, R. J. and M. C. Smythe, "Clarifying filtration of fine particle suspensions aided by electrical and acoustic fields," Chemical Engineering Research and Design, Vol. 78, No. 1, pp. 125-135 (2000).
Wang, F., S. Lu, and M. Ji, "Components of released liquid from ultrasonic waste activated sludge disintegration," Ultrasonics Sonochemistry, Vol. 13, No.4, pp. 334-338 (2006).
Wang, L., L. Zhang, and A. Li, "Hydrothermal treatment coupled with mechanical expression at increased temperature for excess sludge dewatering: Influence of operating conditions and the process energetics," Water Research, Vol. 65, pp. 85-97 (2014).
Xu, H., P. He, G. Yu, and L. Shao, "Effect of ultrasonic pretreatment on anaerobic digestion and its sludge dewaterability," Journal of Environmental Sciences, Vol. 23, No. 9, pp. 1472-1478 (2011).
Yan, Y. D., S. M. Glover, G. J. Jameson, and S. Biggs, "The flocculation efficiency of polydisperse polymer flocculants," International Journal of Mineral Processing, Vol. 73, pp. 161-175 (2004).
Yang, G. C. C., M. C. Chen, and C. F. Yeh, "Dewatering of a biologicalindustrial sludge by electrokinetics-assisted filter press," Separationand Purification Technology, Vol. 79, pp. 177-182 (2011a).
Yang, G. C. C. and Y. I. Chang, "Integration of emulsified nanoiron injection with the electrokinetic process for remediation of trichloroethylene in saturated soil," Separation and Purification Technology, Vol. 79, pp. 278-284 (2011b).
Yang, G. C. C. and C. F. Yeh, "Enhanced nano-Fe3O4/S2O82- oxidation of trichloroethylene in a clayey soil by electrokinetics," Separation and Purification Technology, Vol. 79, pp. 264-271 (2011c).
Yang, G. C. C. and M. Y. Wu, "Injection of nanoscale Fe3O4 slurry coupled with the electrokinetic process for remediation of NO3− in saturated soil: remediation performance and reaction behavior". Separation and Purification Technology, Vol. 79, No. 2, pp. 272-277 (2011d).
Yang, G. C. C., Y. H. Chiu, and C. L. Wang, "Integration of electrokinetic process and nano-Fe3O4/S2O82− oxidation process for remediation of phthalate esters in river sediment." Electrochimica Acta, Vol. 181, No. 1, pp. 217-227 (2015).
Yang, G. C. C., S. C. Huang, Y. S. Jen, and P. S. Tsai, "Remediation of phthalates in river sediment by integrated enhanced bioremediation and electrokinetic process." Chemosphere, Vol. 150, pp. 576-585 (2016).
Yin, X., P. Han, X. Lu, and Y. Wang, "A review on the dewaterability of bio-sludge and ultrasound pretreatment," Ultrasonics Sonochemistry, Vol. 11, No.6, pp. 337-348 (2004).
Yu, X., S. Zhang, H. Xu, L. Zheng, X. Lu, and D. Ma, "Influence of filter cloth on the cathode on the electroosmotic dewatering of activated sludge," Chinese Journal of Chemical Engineering, Vol. 18, pp. 562-568 (2010).
Yuan, H. P., X. B. Cheng, S. P. Chen, N. W. Zhu, and Z. Y. Zhou, "New sludge pretreatment method to improve dewaterability of waste activated sludge," Bioresource Technology, Vol. 102, pp. 5659-5664 (2011).
Zhai, L. F., M. Sun, W. Song, and G. Wang, "An integrated approach to optimize the conditioning chemicals for enhanced sludge conditioning in a pilot-scale sludge dewatering process," Bioresource Technology, Vol. 121, pp. 161-168 (2012).
Zhao, Y. Q., E. N. Papavasilopoulos, and D. H. Bache, "Clogging of filter medium by excess polymer during alum sludge filtration," Filtration and Separation, Vol. 35, No. 10, pp. 947-950 (1998).
Zhou, J., Z. Liu, P. She, and F. Ding, "Water removal from sludge in a horizontal electric field," Drying Technology, Vol. 19, pp. 627-638 (2001).
Zhu, C., P. Zhang, H. Wang, and J. Ye, "Conditioning of sewage sludge via combined ultrasonication-flocculation-skeleton building to improve sludge dewaterability," Ultrasonics Sonochemistry, Vol. 40, pp. 353-360 (2018).
中文部分:
內政部營建署下水道工程處,“全國污水下水道用戶接管普及率及整體污水處理率統計表”,臺灣 (2016)。
內政部營建署下水道工程處,“全國污水下水道用戶接管普及率及整體污水處理率統計表”,臺灣 (2017)。
王瑞森,“新式污泥調理技術之研究”,碩士學位論文,國立台灣科技大學化學工程系,台北市 (2003)。
朱敬平,“污泥中間處理技術(污泥濃縮、調理、脫水)”,廢水污泥減量減容技術講習會,台北市 (2004)。
朱敬平,“有機污泥資源化技術發展與應用”,中華製漿造紙技術協會,第4 頁 (2005)。
行政院環保署事業廢棄物申報及管理資訊系統,“全國事業廢棄物申報統計表”,台灣 (2014)。
行政院環保署事業廢棄物申報及管理資訊系統,“全國事業廢棄物申報統計表”,台灣 (2015)。
吳璽文,“鹼及超音波水解對污泥減量及提昇消化效能之研究”,碩士學位論文,朝陽科技大學環境工程與管理系,台中市 (2009)。
李玄安,“凹板式壓濾電脫水系統處理都市下水污泥之性能評估”,碩士學位論文,國立中山大學環境工程研究所,高雄市 (2015)。
李輝煌,“田口方法:品質設計的原理與實務”,高立圖書有限公司,台北市 (2000)。
林彥融,“利用高級氧化法調理與板框式壓濾電脫水技術提升都市下水污泥之脫水成效”,碩士學位論文,國立中山大學環境工程研究所,高雄市 (2015)。
直友科技有限公司, 「廢水處理藥劑」,http://www.summit-chem.com/product/product.php?lang=cn&class2=68,台北市 (2014)。
邱俊祥,“廢棄活性污泥超音波水解能源化效益之探討”,碩士學位論文,朝陽科技大學環境工程與管理系,台中市 (2009)。
邱鈺婷,“廢棄活性污泥超音波水解特性之研究”,碩士學位論文,朝陽科技大學環境工程與管理系,台中市 (2008)。
張信堃、莊順興、李岳翰及黃春財,“微生物燃料電池產電效能之研究-以活性污泥水解產物為基質”,下水道與水環境再生研討會,台北市 (2011)。
莊詩韻,“含磷污泥與超音波預處理鋁鹽污泥之共調理脫水”,清潔生產與環保技術e報,87,台北市 (2011)。
陳旻聰,“利用電動力輔助板框式壓濾脫水系統處理不同生物污泥之研究”,碩士學位論文,國立中山大學環境工程研究所,高雄市 (2012)。
楊金鐘、林彥融、李玄安,“壓濾機濾板的製作方法及壓濾機濾板”,中華民國發明專利,專利號碼: I519335 (2016)。
楊金鐘、林彥融、李玄安,“壓濾機濾板及其製作方法”,中國發明專利,專利號碼: 2188369 (2016)。
蔡佳伶,“板框式壓濾脫水系統對不同生物污泥脫水成效及其中鄰苯二甲酸酯類流布研究”,碩士學位論文,國立中山大學環境工程研究所,高雄市 (2013)。
行政院環保署環境檢驗所,「一般廢棄物(垃圾)水分測定法–間接測定法」, NIEA R213.21C ,http://www.niea.gov.tw/niea/REFUSE/R21321C.htm, (2002)。
行政院環保署環境檢驗所,「水之氫離子濃度指數(pH 值)測定方法–電極法」, NIEA W424.52A ,http://www.niea.gov.tw/niea/WATER/W42452A.htm, (2008)。
行政院環保署環境檢驗所,「水中導電度測定方法–導電度計法」, NIEA W203.51B ,http://www.niea.gov.tw/niea/WATER/W20351B.htm, (2000)。
行政院環保署環境檢驗所,「水中總溶解固體及懸浮固體檢測方法─103~105℃乾燥」, NIEA W210.58A ,http://www.niea.gov.tw/analysis/method/methodfile.asp?mt_niea=W210.58A, (2013)。
行政院環保署環境檢驗所, 「污泥廢棄物中總固體、固定性及揮發性固體含量檢測方法」, NIEA R212.02C,https://www.niea.gov.tw/niea/pdf/REFUSE/R21202C.pdf, (2014)。
行政院環保署, 「廢棄物代碼查詢」,事業廢棄物申報及管理資訊系統,http://waste.epa.gov.tw/prog/IndexFrame.asp?Func=4,2017 年9 月查詢 (2017)。
鐘崑來,“應用田口式方法於鋼板彎曲成形最佳參數選擇之研究”,碩士學位論文,國立成功大學造船及船舶機械工程研究所,台南市 (2002) 。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code