Responsive image
博碩士論文 etd-0815103-120631 詳細資訊
Title page for etd-0815103-120631
論文名稱
Title
熱休克蛋白於內毒素引發 PC12 細胞死亡之角色研究
The role of heat shock proteins in lipopolysaccharide-induced PC12 cell death
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
74
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2003-07-23
繳交日期
Date of Submission
2003-08-15
關鍵字
Keywords
PC12細胞、內毒素、熱休克蛋白
PC12 cell, Heat shock proteins, Lipopolysaccharide
統計
Statistics
本論文已被瀏覽 5693 次,被下載 5350
The thesis/dissertation has been browsed 5693 times, has been downloaded 5350 times.
中文摘要
中 文 摘 要
本論文研究目的在於探討由內毒素引起的未分化的PC12 細胞死亡過程中,熱休克蛋白 60、70 及90 所扮演的角色。
將 1 x 105 cells/ml 的 PC12 細胞培養於 poly-L-lysine 修飾過的 3.5 公分的培養皿中,以內毒素 (1 mg/ml;血清型 O55:B5) 分別投予 3、6、12 及 24 小時,利用 Trypan blue 檢測細胞的存活率,並以 Western blot 偵測細胞內熱休克蛋白 60、70 及 90 的表現情形。結果顯示投予內毒素於 PC12 細胞,12 小時後即會造成顯著的細胞死亡,24 小時後其存活率僅剩下約 30%;隨著 PC12 細胞存活率的降低,熱休克蛋白 70 及 60 的蛋白質表現量亦會增加。熱休克蛋白 70在內毒素處理 12 小時後即有顯著增加,24 小時後更增加為對照組的 10 倍以上;熱休克蛋白 60 在內毒素處理 24 小時後增加為對照組的 2 倍左右。相對於熱休克蛋白 60 及 70,熱休克蛋白 90 在 PC12 細胞中的表現量並不會受到內毒素的影響而改變。
為了進一步探討熱休克蛋白 60、70 及 90 在內毒素引起的 PC12 細胞死亡過程中所扮演的角色,預先投予熱休克蛋白專一的反義寡核苷酸,處理 24 小時,抑制細胞內熱休克蛋白的表現,再投予內毒素;同樣計數細胞的存活率並偵測細胞內熱休克蛋白 60、70 及 90 的表現情形。結果顯示抑制熱休克蛋白 60 及 70 的蛋白質表現,PC12 細胞受內毒素影響下的存活率會降低;但抑制熱休克蛋白 90 的蛋白質表現並不會影響處理內毒素後 PC12 細胞的存活率。
本研究結果顯示未分化的 PC12 細胞會隨著內毒素處理的時間增加而造成存活率的漸趨下降,並且伴隨著熱休克蛋白 60 及 70 的蛋白質表現增加,但並不會影響熱休克蛋白 90 的表現情形;更進而發現熱休克蛋白 60 及 70 均扮演保護 PC12 細胞的角色,降低內毒素所造成的 PC12 細胞死亡;而熱休克蛋白 90 則不參與內毒素所引起的 PC12 細胞死亡過程。
Abstract
英 文 摘 要
We investigated the role of heat shock proteins (HSPs), particularly HSP60, HSP70 or HSP90 in E. coli lipopolysaccharide (LPS)-induced naïve pheochrommocytoma cell (PC12) death.
PC12 cells seeded at a density of 1x105 cells per poly-L-lysine-coated 3.5 cm diameter polystyrene dish were incubated with LPS (1 mg/ml; serotype O55:B5) for 3, 6, 12, or 24 hr. Cell viability was measured by trypan blue test, and expression of HSP60, HSP70, and HSP90 were detected by Western blot analysis. We found that the viability of PC12 cell decreased significantly after treatment with LPS for 12 hr, and viability was only 30% at 24 hr post-treatment. Western blot analysis revealed that LPS-induced PC12 cell death was associated with an increase in HSP70 or HSP60. HSP70 was markedly up-regulation at 12 hr; and both HSP70 and HSP60 increased significantly by over 1000% and 200%, respectively, 24 hr after administration of LPS. There was no significant change in HSP90 level 3, 6, 12, or 24 hr after LPS treatment. To further investigate the role of HSP70, 60, or HSP90 in LPS-induced PC12 cell death, we treated PC12 cells with hsps antisense oligonucleotide (AODN) for 24 hr. The effects of LPS on cell viability and HSP60, HSP70, or HSP90 expression were again tested. We found that suppression of HSP70 or HSP60 expression accelerated the process of LPS-induced cell death. A reduction in HSP90 level, however, had little effect.
The study revealed that HSP70 and HSP60 played an anti-death role during LPS-induced PC12 cell death, and HSP90 did not appear to be involved.
目次 Table of Contents
目 錄
中文摘要……………………………………………………………………………...1
英文摘要……………………………………………………………………………...3
緒 論…………………………….………………….…………………………….5
研究源起與目的………………………….……………………………………14
研究方法…………………………….……………………………………………...15
實驗結果…………………………….……………………………………………...28
討 論…………………………….……………………………………………...33
結 論…………………………….……………………………………………...42
參考文獻…………………………….……………………………………………...43
附 圖…………………………….……………………………………………...55
參考文獻 References
Ahn J. H., Ko Y. G., Park W. Y., Kang Y. S., Chung H. Y., and Seo J. S. Suppression of ceramide-mediated apoptosis by HSP70. Mol. Cells, 9:200-206, 1999.
Becker J., and Craig E. A. Heat-shock proteins as molecular chaperones. Eur. J. Biochem., 219:11-23, 1994.
Beere H. M., Wolf B. B., Cain K., Mosser D. D., Mahboubi A., Kuwana T., Tailor P., Morimoto R. I., Cohen G. M., and Green D. R. Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nat. Cell Biol., 2:469-475, 2000.
Blake M. J., Nowak T. S., and Holbrook N. J. In vivo hyperthermia induces expression of HSP70 mRNA in brain in response to stress. Mol. Brain Res., 8:89-92, 1990.
Chan S. H. H., Chang K. F., Ou C. C., and Chan J. Y. H. Up-regulation of glutamate receptors in nucleus tractus solitarii underlies potentiation of baroreceptor reflex by heat shock protein 70. Mol. Pharmacol., 61:1097-1104, 2002.
Choi H.S., Li B., Lin Z., Huang E., and Liu A. Y. cAMP and cAMP-dependent protein kinase regulate the human heat shock protein 70 gene promoter activity. J. Biol. Chem., 266:11858-11865, 1991.
Davies T. H., Ning Y. M., and Sanchez E. R. A new first step in activation of steroid receptors:hormone-induced switching of FKBP51 and FKBP52 immunophilins. J. Biol. Chem., 277:4597-4600, 2002.
Deitch E. A., Beck S., Cruz N. C., and Maio A. D. Induction of heat shock gene expression in colonic epithelial cells after incubation with Escherichia coli or endotoxin. Crit. Care Med., 23:1371-1376, 1995.
Dipshikha C., Naoki K., Yutaka K., Tsuyoshi S., Makoto K., Masako F., Tomoaki Y., and Takashi Y. Cytoskeletal alterations in lipopolysaccharide-induced bovine vascular endothelial cell injury and its prevention by sodium arsenite. Clin. Diag. Immunol., 7:218-225, 2000.
Doran J. F., Jackson P., Kynoch P. A. M., and Thompson R. J. Isolation of PGP9.5, a new human neurone-specific protein detected by high-resolution two-dimensional electrophoresis. J. Neurochem., 40:1542-1547, 1982.
Ellis R. J. The general concept of molecular chaperones. Phil. Trans. R. Soc. Lond. B, 339:257-261, 1993.
Gabai V. L., Meriin A. B., Caron A. W., Rits S., Shifrin V. I., and Sherman M. Y. HSP70 prevents activation of stress kinases:a novel pathway of cellular thermotolerance. J. Biol. Chem., 272:18033-18037, 1997.
Gabai V. L., Yaglom J. A., Volloch V., Meriin A. B., Force T., Koutroumanis M., Massie B., Mosser D. D., and Sherman M. Y. HSP72-mediated suppression of c-Jun N-terminal kinase is implicated in development of tolerance to caspase-independent cell death. Mol. Cell. Biol., 20:6826-6839, 2000.
Georgopoulos C., and Welch W. J. Role of the major heat shock protein. Annu. Rev. Cell Biol., 3:601-634, 1993.
Green M., Schuetz T. J., Sullivan E. K., and Kingston R. E. A heat shock-responsive domain of human HSF1 that regulates transcription activation domain function. Mol. Cell Biol., 15:3354-3362, 1995.
Greene L. A., and Tischler A. S. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc. Natl. Acad. Sci. USA, 73:2424-2428, 1976.
Heine H., Delude R. L., Monks B. G., Espevik T., and Golenbock D. T. Bacterial lipopolysaccaride induces expression of the stress response genes hop and H4111. J. Biol. Chem., 103:21049-21055, 1999.
Heneka M. T., Löschmann P. A., Geleichmann M., Weller M., Schulz J. B., WüllnerU., and Klockgether T. Induction of Nitric oxide synthase and nitric oxide-mediated apoptosis in neuronal PC12 cells after stimulation with tumor necrosis factor-α/lipopolysaccharide. Neurochem., 71:88-94, 1998.
Heitmeier M. R., Scarim A. L., and Corbett J. A. Double-strained RNA-induced inducible nitric-oxide synthase expression and interleukin-1 release by murine macrophages requires NF-κB activation. J. Biol. Chem., 273:15301-15307, 1998.
Jaattela, M. Overexpression of major heat shock protein HSP70 inhibits tumor necrosis factor-unduced activation of phopholipase A2. J. Immunol., 151:4286-4294, 1993.
Jaattela, M., Wissing, D., Kokholm, K., Kallunki, T., and Egeblad, M. HSP70 exerts its anti-apoptotic function downstream of caspase-3-like proteases. EMBO J., 17:6124-34, 1998.
Jacob U., and Buchner J. Assisting spontaneity:the role of HSP90 and small HSPs as molecular chaperones. Science,19:205-211, 1994.
Jolly C., and Morimoto R. I. Role of the heat shock response and molecular chaperones in oncogenesis and cell death. J. Natl. Cancer Inst., 92:1564-1573, 2000.
Kamata H., Tanaka C., Yagisawa H., Matsuda S., Gotoh Y., Nishida E., and Hirata H. Suppression of nerve growth factor-induced neuronal differentiation of PC12 cells. J. Biol. Chem., 271:33018-33025, 1996.
Kiang J. G., and Tsokos G. C. Heat shock protein 70 kDa:molecular biology, biochemistry, and physiology. Pharmacol. Ther., 80:183-201, 1998.
Kirchhoff S. R., Gupta S., and Knowlton A. A. Cytosolic heat shock protein 60, apoptosis and myocardial injury. Circulation, 105:2899-2904, 2002.
Kirstan K. M., Arthur L. B., Xianzhong M., Rosalia M., Matthew B.K. S., John P. G., and Daniel R. M. Liposomal delivery of heat shock protein 72 into renal tubular cells blocks nuclear factor-κB activation, tumor necrosis factor–α production, and subsequent ischemia-induced apoptosis. Circ. Res., 92:293-299, 2003
Latchman D. S. Heat shock proteins and cardiac protection. Cardiovasc. Res., 51:637-646, 2001.
Lau S. S., Griffin T. M., and Mestril R. Protection against endoxemia by HSP70 in rodent cardiomyocytes. Am. J. Physiol. Heart Cric. Phyiol., 278:H1439-H1445, 2000.
Lee S. J., Choi S. A., Lee K. H., Chung H. Y., Kim T. H., Cho C. K., and Lee Y. S. Role of inducible heat shock protein 70 in radiation-induced cell death. Cell Stress Chaperones, 6:273-281, 2001.
Leppä S., Saffrich R., Ansorge W., and Bohmann D. Differential regulation of c-Jun by ERK and JNK during PC12 cell differentiation. EMBO J., 17:4404-4413, 1998.
Li C. Y., Lee J. S., Ko Y. G., Kim J. I., and Seo J. S. Heat shock protein 70 inhibits apoptosis downstream of cytochrome c release and upstream of caspase-3 activation. J. Biol. Chem., 275:25665-25671, 2000
Lin K. M., Lin B., Lian I. Y., Mestril R., Scheffler I. E., and Dillmann W. H. Combined and individual mitochondrial HSP60 and HSP10 expression in cardiac myocytes protects mitochondrial simulated ischemia-reoxygenation. Circulation,103:1781-1792, 2001.
Meldrum K. K., Burnett A. L., Meng X., Misseri R., Shew M. B. K., Gearhart J. P., and Melddrum D. R. Liposomal delivery of heat shock protein 72 into renal tubular cells blocks nuclear factor-κB activation, tumor necrosis factor–α production, and subsequent ischemia-induced apoptosis. Circ. Res., 92 :293-299, 2003.
Meriin A. B., Yaglom J. A., Gabai V. L., Mosser D. D., Zon L., and Sherman M. Y. Protein-damaging stresses activate c-Jun N-terminal kinase via inhibition of its dephosphorylation:a novel pathway controlled by HSP72. Mol. Cell. Biol., 19:2547-2555, 1999.
Morimoto R. I. Cells in stress:transcriptional activation of heat shock gene. Science, 259:1409-1410, 1993.
Morooka T., and Nishida E. Requirement of p38 mitogen-activated protein kinase for neuronal differentiation in PC12 cells. J. Biol. Chem., 273:24285-24288, 1998.
Mosser D. D., Caron A. W., Bourget L., Denis-Larose C., and Massie B. Role of the human heat shock protein HSP70 in protection against stress-induced apoptosis. Mol. Cell. Biol., 17:5317-5327, 1997.
Obin M., Mesco E., Gong X., Hssa A. L., Joseph J., and Taylor A. Neurite outgrowth in PC12 cells. J. Biol. Chem., 274:11789-11795, 1999.
Osaki J., Haneda T., Kashiwagi Y., Oi S., Fukuzawa J., Sakai H., and Kikuchi K. Pressure-induced expression of heat shock protein 70 mRNA in adult rat heart is coupled both to protein kinase A-dependent and protein kinase C-dependent systems. J. Hypertens.,16:1193-1120, 1998.
Pandey P., Saleh A., Nakazawa A., kumar S., Srinuvasula S. M., Kumar V., Weichselbaum E., Nalin C., Alnemri E. S., Kufe D., and Kharbanda S. Negative regulation of cytochrome c-mediated oligomerization of Apaf-1 and activation of procaspase-9 by heat shock protein 90. EMBO J., 19:4310-4322, 2000.
Pirkkala L., Nykanen P., and Sistonen L. Rple of the heat shock transcription factors in regulation of the heat shock response and beyond. FASEB J., 15:1118-1131, 2001.
Pratt W. B., and Welsh M. J. Chaperone functions of the heat shock proteins associated with steroid receptors. Semin. Cell Biol., 5:83-93, 1994.
Renoir J. M., Buchou T., and Baulieu E. E. Involvement of a nonhormone-binding 90-kilodalton protein in the nontransformed 8S form of the rabbit iteris progesterone receptor. Biochemistry, 25:6405-6413, 1986.
Rietschel E. T., Kirikae T., Schade F. U., Mamat U., Schmidt G., Loppnow H., Ulmer A. Z., Zahringer U., Seydel U., Di Padova F., Schreier M., and Brade H. Bacterial endotoxin:molecular relationships of structure to activity and function. FASEB J., 218:217-225, 1994.
Ritossa F. A new puffing pattern induced by temperature shock and DNP in Drosophila. Experientia., 19:571-573, 1962.
Samali A., Holmberg C. I., Sistonen L., and Orrenius S. Thermotolerance and cell death are distinct cellular response to stress:dependence on heat shock proteins. FEBS Lett., 461:306-310, 1999.
Sanchez E. R., Housley P., and Pratt W. B. The molybdate-stabilized glucocorticoid binding complex of L-cells contains a 98-100 Kdalton nonsteroid-binding phosphoproteon that is part of the murine heat-shock complex. J. Steroid Biochem., 24:9-18, 1986.
Sanchez E., Meshinchi S., Tienrungroj W., Schlesinger M. J., Toft D. O., and Pratt W. B. Relationship of the 90-kDa murine heat-shock protein to the untransformed and transformed states of the L cell glucocorticoid receptor. J. Biol. Chem., 262:6986-6991, 1987.
Silverstein A. M., Galigniana M. D., Chen M. S., Owens-Grillo J. K., Chinkers M., and Pratt W. B. Protein phosphatase 5 is a major component of glucocorticoid receptor. Hsp90 complexes with properties of an FK506-binding immunophilin. J. Biol. Chem., 272:16224-16230, 1997.
Soltys B. J., and Gupta R. S. Immunoelectron microscopic localization of the 60-kDa heat shock chaperonin protein (HSP60) in mammalian cells. Exp. Cell Res., 222:16-27, 1996.
Tissieres A., Mitchell II. K., and Tracy U. Protein synthesis in salivary glands of Drosophilla melanogaster:relation to chromosome puff. J. Mol. Bio., 84:389-398, 1974.
Tracey K. J., and Lowry S. F. The role of cytokine mediators in septic shock. Adv. Surg., 23:21-56, 1990.
Welch W. J. Heat shock proteins functioning as molecular chaperones:their roles in normal and stressed cells. Phil. Trans. R. Soc. Lond. B., 339:327-333, 1993.
Wong H. R., Mannix R. J., Rusnak J. M., Boota A., Zar H., Watkins S. C., Lazo J. S., and Pitt B. R. The heat-shock response attenuates lipopolysaccharide-mediated apoposis in cultured sheep pulmonary artery endothelial cells. Am. J. Respir. Cell Mol. Biol., 15:745-751, 1996.
Xaus J., Comalada M., Valledor A. F., Lloberas J., López-Soriano F., Argilés J. M., Bogdan C., and Celada A. LPS induces apoptosis in macrophages mostly through the autocrine production of TNF- α . Blood, 95:3823-3831, 2000.
Xu Y., and Lindquist S. Heat shock protein HSP90 governs the activity of v-src kinase. Proc. Natl. Acad. Sci. USA, 907074-907078, 1993.
Yang X. D., and Feige U. Heat shock proteins in autoimmune disease. From causative antigen to specific therapy? Experientia., 48:650-656, 1992.
Zucchi I., Bini L., Albani D., Valaperta R., Liberator S., Reggiaschi R., Montagna C., Susani L., Barbier O., Pallini V., Vezzoni P., and Dulbecco R. Dome formation in cell cultures as expression of an early stage of lactogenic differentiation of the mammary gland. Proc. Natl. Acad. Sci. USA, 99:8660-8665, 2002.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code