Responsive image
博碩士論文 etd-0815107-152332 詳細資訊
Title page for etd-0815107-152332
論文名稱
Title
Ubiquitin接合酶次單位Skp2及Cks1在肝癌的表現及預測預後的角色
The Prognostic Role and Expression of the Ubiquitin Ligase Subunits Skp2 and Cks1 in Hepatocellular Carcinoma
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
74
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-07-27
繳交日期
Date of Submission
2007-08-15
關鍵字
Keywords
肝癌、Ubiquitin接合酶次單位Skp2及Cks1
Skp2, Cks1, Hepatocellular carcinoma
統計
Statistics
本論文已被瀏覽 5710 次,被下載 1522
The thesis/dissertation has been browsed 5710 times, has been downloaded 1522 times.
中文摘要
因為台灣是B型肝炎 (Hepatitis virus B infection, HBV) 的盛行區域,所以肝癌 (Hepatocellular carcinoma, HCC) 在台灣的發生率很高。在台灣,惡性腫瘤數年來一直位處國人十大死因之榜首,而肝癌是惡性腫瘤中的第二位。因為期別是重要的預後因子,所以早期診斷可以改善肝癌的存活率。甲型胎兒蛋白 (alpha-fetoprotein, AFP) 是目前診斷及追蹤治療肝癌的最重要的腫瘤標誌。可是甲型胎兒蛋白對肝癌診斷的敏感性、特異性及陽性預測率卻不是令人很滿意。細胞週期抑制劑 p27kip1的表現量降低與肝癌的不好預後明顯相關,所以p27kip1已被證明為可能的肝癌的重要預後因子。而p27kip1的表現量降低是因為p27kip1經由ubiquiting-proteosome系統的降解增加所致。在許多的報導中曾證實Skp2 (S-phase kinase associated protein 2) 與其輔助因子Cks1 (Cyclin-dependent kinase subunit 1) 是p27kip1經由 ubiquiting-proteosome系統的降解反應中必要的ubiquitin接合酶。在很多人類惡性腫瘤中都可發現Skp2與Cks1的表現量增加。可是從來沒有研究曾經報導過p27kip1、Skp2與Cks1這三種蛋白質的表現量在肝癌中的關係及預後角色。在本研究中,我們就研究p27kip1、Skp2與Cks1這三種蛋白質的表現量在肝癌中的關係及預後角色。
我們使用75個肝癌病人手術後石蠟包埋的標本切片及高特異性抗體作免疫組織化學染色,來研究p27kip1、Skp2與Cks1這三種蛋白質在肝癌細胞中的表現量。同時我們也收集並分析所有病人的臨床資料,來研究p27kip1、Skp2與Cks1這三種蛋白質與臨床資料的相關性。
分化良好的肝癌傾向較高的p27kip1表現量 (55.6%)及較低的Skp2與Cks1表現量 (66.7%及77.8%)。分化不好的肝癌傾向較低的p27kip1表現量 (64.3%)。Cks1的表現量與Skp2的表現量有明顯的正相關性 (P = 0.000) 。相反地,在本研究中,我們沒有發現p27kip1的表現量與Cks1及Skp2的表現量有明顯的負相關性。p27kip1、Skp2與Cks1這三種蛋白質在肝癌細胞中的表現量與肝癌期別 (AICC TNM system及 CLIP scoring system )有明顯的相關性。此外,Skp2 和Cks1的表現量與存活率有明顯的相關性,也就是說較高Skp2與Cks1表現量的病人有較差的存活率。
本研究是第一個報告Cks1這個蛋白質在肝癌中的表現量及預測預後的角色。較高的Skp2與Cks1表現量與晚期肝癌及較差預後有明顯相關性。因此,Skp2與Cks1可以被視為可能的新的肝癌的重要預後因子及治療標靶。
Abstract
The incidence of hepatocellular carcinoma (HCC) is high in Taiwan, because Taiwan is one of HBV-endemic areas. Moreover, HCCs are the 2nd most common cause of death caused by malignancies in Taiwan. Early detection of HCC can improve the survival rate because the stage is one of important prognostic factors. Alpha-fetoprotein (AFP) is the most important tumor marker for diagnosis of HCC and surveillance of treatment. However, the sensitivity, the specificity and positive predictive value of AFP are not very satisfactory. The cell cycle inhibitor p27kip1 is known as a potential prognostic marker for HCC. Decreased expression of cell cycle inhibitor p27kip1 is associated with poor prognosis in HCC. The decreased expression of p27kip1 results from increased ubiquitin-proteosome degradation. S-phase kinase associated protein (Skp2) and cyclin-dependent kinase subunit 1 (Cks1) are the subunits of the ubiquitin ligases responsible for the ubiquitin-proteosome degradation of p27kip1. The increased expression of Skp2 and Cks1 were found in many kinds of human cancers. However, there is no report about the relationship between Cks1, Skp2 and p27kip1 expression in hepatocellular carcinoma. In the present study, we investigated the expression of Cks1, Skp2 and p27kip1 and their prognostic roles in hepatocellular carcinoma.
We used highly specific antibodies in immunohistochemistry to examine the expressions of Cks1, Skp2, and p27kip1 on paraffin-embedded tissue section from 75 patients with hepatocellular carcinoma. Meanwhile, we also analyzed the clinical significance of these three proteins with the various clinicopathological factors and follow-up data.
Well-differentiated HCCs tended to express higher level of p27kip1 (55.6%), and lower levels of Skp2 (66.7%) and Cks1 (77.8%). Poorly differentiated HCCs tended to express lower level of p27kip1 (64.3%). The expression of Cks1 was significantly associated with the expression of Skp2 (P=0.000). In contrast, there were no inverse relationships between the expression of p27kip1 and the expressions of Skp2 and Cks1 in the present study. The expressions of p27kip1, Skp2, and Cks1 were significantly associated with disease stage (AJCC TNM stage system and CLIP scoring system). Moreover, there were significant associations between overall survival rates and the expressions of Skp2 and Cks1 (P = 0.036 and 0.015, respectively). Patients with higher expression of Skp2 and Cks1 had worse survival rates.
This is the first report of the expression and prognostic role of Cks1 in HCC. Higher expression of Skp2 and Cks1 were significantly associated with advanced stage and poor prognosis. Thus, both Skp2 and Cks1 may be considered as potential novel prognostic markers providing more accurate prediction of prognosis combined with AFP and therapeutic targets in HCCs.
目次 Table of Contents
Abstract
Chinese 3
English 5
Abbreviations 7
Introduction 8
Materials and Methods 16
Results 19
Discussion 25
References 28
Tables 43
Figures 49
Appendices 67
參考文獻 References
References
1. Fong Y, Kemeny N, Lawrence T.S. Cancer of the liver and biliary tree. In: DeVita V, Hellman S, Rosenberg SA. Cancer: principles & practice of oncology. 6th ed. Philadelphia: Lippincott, Williams & Wilkins, 2001.
2. Rustgi V. Epidemiologyof hepatocellular carcinoma. Gastroenterol Clin North Am 1987; 16: 545.
3. Oon C, Rauff A, Tan LK. Treatment of primary liver cancer in Singapore. A review of 3,200 cases seen between Jaunary 1, 1977 and July 31, 1987. Cancer Chemother Pharmacol 1967; 23: S13
4. Okuda K, Fujimoto I, Hanai A, Urano Y. Changing incidence of hepatocellular carcinoma in Japan. Cancer Res 1987; 47, 4967-72.
5. Landis SH, Murray T, Bolden S, Wingo PA. Cancer statistics, 1998. CA Cancer J Clin 1998; 48:6-29.
6. El-Serag HB, Mason AC. Rising incidence of hepatocellular carcinoma in the United States. N Engl J Med 1999; 340: 745-50.
7. Taylor-Robinson SD, Foster GR, Arora S, Hargreaves S, Thomas HC. Increase in primary liver cancer in the UK, 1979-94. Lancet 1997;350: 1142-3.
8. McGlynn KA, Tsao L, Hsing AW, Devesa SS, Fraumeni JF Jr. International trends and patterns of primary liver cancer. Int J Cancer 2001; 94: 290-6.
9. Okuda K. Liver cancer. In: Zuckerman AJ, Thamos HC, editors. Viral hepatitis. Scientific Basis and Clinical Management. Edinburgh: Churchill Livingstone, 1994; 269-81.
10. Okuda K. Hepatocellular carcinoma. J Hepatol. 2000;32(1 Suppl):225-37
11. Chen DS. From hepatitis to hepatoma: lessons from type B virus hepatitis. Science 1993; 262:369-70.
12. Sun CA, Wu DM, Lin CC, Lu SN, You SL, Wang LY, Wu MH, Chen CJ. Incidence and cofactors of hepatitis C virus-related hepatocellular carcinoma: a prospective study of 12,008 men in Taiwan. Am J Epidemiol. 2003 Apr 15;157(8):674-82.
13. Kao JH, Chen DS. Changing disease burden of hepatocellular carcinoma in the Far East and Southeast Asia. Liver Int. 2005 Aug;25(4):696-703.
14. Department of Health, the Executive Yuan, Republic of China. Republic of China Health and Vital Statisics, 2005.
15. Peterson MS, Baron RL. Radiological diagnosis of hepatocellular carcinoma. Clin Liver Dis 2001;5:123-44.
16. Sherman M, Peltekian KM, Lee C. Screening for hepatocellular carcinoma in chronic carriers of hepatitis B virus: incidence and prevalence of hepatocellula carcinoma in a North American urban population. Hepatology 1995;22:432-8.
17. Collier J, Sherman M. Screening for hepatocellular carcinoma. Hepatology 1998;37:273-8.
18. Trevisani F, D’lntino PE, Morselli-Labate AM, Mazzella G, Accogli E, Caraceni P, Domenicali M, De Notariis S, Roda E, Bernardi M. Serum α-fetoprotein for diagnosis of hepatocellular carcinoma in patients with chronic liver disease: influence of Hbs Ag and anti-HCV status J Hepatol 2001;34-570-5.
19. Gambarin-Gelwan M, Wolf DC, Ahapiro R, Schwartz ME, Min AD.Sensitivity of commonly available screening tests in detecting hepatocellular carcinoma in cirrhotic patients undergoing liver transplantation. Am J Gastroenterol 2000;95:1535-8.
20. Nguyen MH, Garcia RT, Simpson PW, Wright TL, Keefe EB. Racial differences in effectiveness ofα-fetoprotein for diagnosis of hepatocellular carcinoma in hepatitis C virus cirrhosis. Hepatology 2002;36:410-7.
21. Peng YC, Chan CS, Chen GH. The effectiveness f serum alpha-fetoprotein level in anti-HCV positive patients for screening hepatocellular carcinoma. Hepatogastroenterology 1999;46:3208-11.
22. Cedrone A, Covino M, Catrelli E, Pompili M, Lorenzlli G,Villani MR, Valle D, Sperandeo M, Rapaccini GL, Gasbarrini G. Utility of alpha-fetoprotein (AFP) in the screening of patients with virus-related chronic liver disease: does different viral etiolog influence AFP levels in HCC? A study in 350 western patients. Hepatogastroenterology 2000;47:1654-8.
23. Tong MJ, Blatt LM, Kao VW. Surveillance for hepatocellular carcinoma in patients with chronic viral hepatitis in the United States of America. J Gastroenterol Hepatol 2001;16-553-9.
24. Daniele B, Bencivenga A, Megna AS, Tinessa V. Alpha-fetoprotein and ultrasonography screening for hepatocellular carcinoma.Gastroenterology. 2004 Nov;127:S108-12.
25. Peng SY, Chen WJ, Lai PL, et al.: High alpha-fetoprotein level correlates with high stage, recurrence and poor prognosis of hepatocellular carcinoma: Significance of hepatitis virus infection, age, p53 and beta-catenin mutation. Int J Cancer 2004;112:44-50.
26. Tangkijvanich P, Anukulkarnkusol N, Suwangool P, Lertmaharit S, Hanvivatving O, KullavanijayaP, Poovorawan Y. Clinical characteristics and prognosis of hepatocellular carcinoma: analysis based n serum alpha-fetoprotein levels. J Clin Gastroenterol 2000;31:302-8.
27. Yao DF, Dong ZZ, Yao M. Specific molecular markers in hepatocellular carcinoma.
Hepatobiliary Pancreat Dis Int. 2007 Jun;6(3):241-7.
28. Shinivas PR, Kramer BS, Srivastava S. Trends in biomarker research for cancer detection. Lancet Oncol 2001;2:698-704.
29. Sherr CJ. G1 phase progression: cycling on cue. Cell 1994;79:551-5.
30. Hunter T, Pines J. Cyclins and cancer.Ⅱ. Cyclin D and CDK inhibitors come of agwe. Cell 1994;79:573-82.
31. Sherr CJ, Roberts JM. Inhibitors of mammalian G1 cyclin-dependent kinase. Genes Dev 1995;9:1149-63.
32. Kamb A. Cell-cycle regulators and cancer. Trends Genet 1995;11:136-40.
33. Masague J, POlyak K. Mammalian antiproliferative signals and their targets. Curr Opin Genet Dev 1995;5:591-6.
34. Sherr CJ. Cancer cell cycles. Science 1996;274:1672-7.
35. Ricardo VL, Lori AE, Long J, Elzbieta K, Xiang Q, Jihn CC, Bernd WS. P27kip1: A multifuctional cyclin-dependent kinase inhibitor with prognostic significance in human cancers. Am J Pathol 1999;154(2):313-23.
36. Sherr CJ, Roberts JM.CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 1999;13:1501-12.
37. Polyka K, Lee MH, Erdjument-Bromage H, Koff A, Roberts JM, Tempst P, Massague J. Cloning of p27kip1, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell 1994;78:59-66.
38. Xiong Y, Hannon GJ, Zhang H, Casso D, Kobayashi R, Beach D. p21 is a universal inhibitor of cyclin kinases. Mature 1993;366:701-4.
39. Toyoshima H, Hunter T. p27, a novel inhibitor of G1 cyclin-cdk protein kinase activity, is related t p21. Cell 1994;78:67-74.
40. El-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B. WAF1, a potential mediator of p53 tumor suppression. Cell 1993;75:817-25.
41. Polyak K, Kato JY. Solomon MJ, Sherr CJ, Massague J,Roberts JM, Koff A. p27kip1, a cyclin-Cdkinhibitor links transforming growth factor-β and contact inhibition to cell cycle arrest. Genes Dev 1994;8:9-22.
42. Matsuoka S, Edwards MC, Bai C, Parker S, Zhang P, Baldini A, Harper JW, Elledge SJ. P57/Kip2, a structurally distinct member of the p21/CIP1 Cdk inhibitor family, is a candidate tumor suppressor gene. Genes Dev 1995;9:650-62.
43. Lee MH, Reynisdottir L,Massague L. Cloning of p57 Kip2, a cyclin-depent kinase inhibitor with unique domain structure and tissue distribution. Genes Dev 1995;9:639-49.
44. Ponce-Castaneda MV, Lee MH, Latres E, Polyak K, Lacombe L, Montgomery K, Mathew S, Krauter K, Sheinfeld J, Massague J, Cordon-Cardo C. p27kip1 chromosomal mapping to 12p12-12p13.1 and absence of mutations in human tumors. Cancer Res 1995;55:1211-4.
45. Kato JY, Matsuika M, Polyak K, Massague J, Sherr CJ. Cyclic AMP-induced G1 phase arrest mediated by an inhibitor (p27kip1) of cyclin-dependent kinase 4 activation. Cell 1994;79:487-96.
46. Nakayama K, Ishida N,Shirane M, Inomata A, Inoue T, Shishido N, Horii I, Loh DY, Nakayama KI. Mice lacking p27kip1 display increased body size, multiple organ dysplasia, retinal dysplasia, and pituitary tumors. Cell 1996;85:707-20.
47. Kiyokawa H, Kimerman RD, Manova-Todorova KO, Soares VC, Hoffman ES, Ono M, Khanam D, Hayday AC, Frohman LA, Koff A. Enhanced growth of mice lacking the cyclin-dependent kinase inhibitor fuction of p27 kip1. Cell 1996;85:721-32.
48. Fero ML, Rivkin M, Tasch M, Porter P, Carow CE, Firpo E, polyak K, Tsai LH, Broudy V, Perlmutter RM, Kaushansky K, Roberts JM. A syndrome of multiorgan hyperplasia with features of gigantism, tumor genesis and female sterility in p27kip1-deficient mice. Cell 1996; 85:733-44.
49. Chen J, Willingham T, Shuford M, Nisen PD. Tumor suppression and inhibition of aneuploid cell accumulation in human brain tumor cells by ectopic overexpression of the cyclin-dependen kinase inhibitor p27kip1. J Clin Invest 1996;97:1983-8.
50. Katayose Y, Kim M, Rakkar ANS, Li Z, Cowan KH, Seth P. Promoting apoptosis: a novel activity associated with the cyclin-dependent kinase inhibitor p27. Cancer Res 1997;57:5441-5.
51. Levkau B, Koyama H, Raines EW, Clurman BE, Herren B, Orth K, Roberts J, Ross R. Cleavage of p21cip/waf1 and p27kip1 mediates apoptosis in endothelia cells through activation of cdk2: role of a caspace cascade. Mol Cell 1998;1:553-63.
52. St Croxi B, Florenes VA, Rak JW, Flanagan M, Bhattacharya N, Slingerland JM, Kerbel RS. Impact of the cyclin-dependent kinase inhibitor p27 kip1 on resistance of tumor cells to anti-cancer agents. Nature Med 1996;2:1204-10.
53. Ophascharoensuk V,Fero ML, Hughes J, Roberts JM, Shankland SJ. The cyclin-dependent kinase inhibitor p27 kip1 safeguards against inflammatory injury. Nature Med 1998;4:575-80.
54. Esposito V, Baldi A, De luca A, Groger AM, Loda M, Giordano CG, Caputi M, Baldi F, Pagano M, Giordano A. prognostic role of the cyclin-dependent kinase inhibitor p27 in non-small cell lung cancer. Cancer Res 1997;57:3381-5.
55. Yatabe Y, Masuda A, Nakamura S, Kuroishi T, Osada H, Takahashi T, Mitsudomi T. P27 kip1 in human hung cancers: differential change in small cell and non-small cell carcinoma. Cancer Res 1998;58:1042-7.
56. Catzavelos C, Tsao MS, Deboer G, Bhattacharya N, Shepherd F, Slingerland JM. Reduced expression of the cell cycle inhibitor p27 Kip1 in non-small cell carcinoma: a potential prognostic factor independent of ras. Cancer Res 1999;59:684-8.
57. Loda M, Cukor B, Tam SW, Lavin P, Fiorentino M, Draetta GF, Jessup JM, Pagano M. Increased proteosome-dependent degradation of the cyclin-dependent kinase inhibitor p27 in aggressive colorectal carcinomas. Nat Med 1997;3:231-4.
58. Palmqvist R, Stenling R, Oberg A, Landberg G. Prognostic significance of p27(Kip1) expression in colorectal cancer: a clinicopathological characterization J Pathol 1999;188:18-23.
59. Mori M, Mimori K, Shiraishi T, Tanaka S, Ueo H, Sugimachi K, Akiyoshi T. p27 expression and gastric carcinoma. Nat Med;1997:3:593.
60. Nitti D, Belluco, Mammano E, Marchet A, Ambrosi A, Mencarelli R, Segato P, Lise M. Low level of p27(Kip1) protein expression in gastric adenocarcinoma is associated with disease progression and poor outcome. J Surg Oncol. 2002;81(4):167-75.
61. Hui AM, Sun L, Kanai Y, Sakamoto M, Hirohashi S. Reduced p27Kip1 expression in hepatocellular carcinomas. Cancer Lett. 1998;132:67-73.
62. Ito Y, Matsuura N, Sakon M, Miyoshi E, Noda K, Takeda T, Umeshita K, Nagano H, Nakamori S, Dono K, Tsujimoto M, Nakahara M, Nakao K, Taniguchi N, Monden M. Expression and prognostic roles of the G1-S modulators in hepatocellular carcinoma: p27 independently predicts the recurrence. Hepatology. 1999;30(1):90-9.
63. Eguchi H, Nagano H, Yamamoto H, Miyamoto A, Kondo M, Dono K, Nakamori S, Umeshita K, Sakon M, Monden M. Augmentation of antitumor activity of 5-fluorouracil by interferon alpha is associated with up-regulation of p27Kip1 in human hepatocellular carcinoma cells. Clin Cancer Res. 2000;6(7):2881-90.
64. Qin LF, Ng IO. Expression of p27(KIP1) and p21(WAF1/CIP1) in primary hepatocellular carcinoma: clinicopathologic correlation and survival analysis. Hum Pathol. 2001;32(8):778-84.
65. Amengol C, Boix L, Bachs O, Sole M, Fuster J, Sala M, Llovet JM, Rodes J, Bruix J. p27(Kip1) is an independent predictor of recurrence after surgical resection in patients with small hepatocellular carcinoma. J Hepatol. 2003;38(5):591-7.
66. Zhou Q, He Q, Liang LJ. Expression of p27, cyclin E and cyclin A in hepatocellular carcinoma and its clinical significance.World J Gastroenterol. 2003;9(11):2450-4.
67. Nan KJ, Jing Z, Gong L. Expression and altered subcellular localization of the cyclin-dependent kinase inhibitor p27Kip1 in hepatocellular carcinoma. World J Gastroenterol. 2004;10(10):1425-30.
68. Lei PP, Zhang ZJ, Shen LJ, Li JY, Zou Q, Zhang HX. Expression and hypermethylation of p27 kip1 in hepatocarcinogenesis. World J Gastroenterol. 2005;11(29):4587-91.
69. Porter PL, Malone KE, Heagerty PJ, Alexander GM, Gatti LA, Firpo EJ, Daling JR, Roberts JM. Expression of cell cycle regulators p27kip1 and cyclin E, alone and in combination, correlate with survial in young breast cancer patients. Nat Med 1997;3:222-5.
70. Catzavelos C, Bhattacharya N, Ung YC, Wilson JA, Roncari L, Sandhu C, Shaw P, Yeger H, Morava-protzner I, Kapusta L, Franssen E, Pritchard KI, Slingerland JM. Decreased levels of the cell cycle inhibitor p27Kip1 protein: prognostic implications in primary breast cancer. Nat Med 1997;3:227-30.
71. Tsihlias J, Kapusta LR, DeBoer G, Morava-protzner I, Zbieranowski I, Bhattacharya N, Catzavelos GC, Klotz LH, Slingerland JM. Loss of cyclin-dependent kinase inhibitor p27Kip1 is a novel prognostic factor in localized human prostate adenocarcinoma. Cencer Res 1998;58:542-8.
72. Yang RM, Naitoh J, Murphy M, Wng H-J, Philipson J, deKernion JB, Loda M, Reiter RE. Low p27 expression predicts poor disease-free survival in patients with prostate cancer. J Urol 1998;159:941-5.
73. Fan GK, Fujieda S, Aunaga H, Tsuzuki H, Ito N, Saito H. Expression of protein p27 is associated with progression and prognosis in laryngeal cancer. Laryngoscope 1999;109:815-20.
74. Mineta H, Miura K, Suzuki I, takebayashi S, amino H, Araki K, Harada H, Ichimura K, Wennerberg JP, Dictor MR. Low p27 expression correlates with poor prognosis for patients with oral tongue squamous cell carcinoma. Cancer 1999;85:1011-7.
75. Hengst L, Reed SI. Translational control of p27Kip1 accumulation during the cell cycle. Science 1996;271:1861-4.
76. Pagano M, Tam SW, Theodoras AM, Beer-Romero P, Del Sal G, Chau V, Yew PR, Draetta GF, Rolfe M. Role of ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. Science 1995;268:682-5.
77. Carrano AC, Eytan E, Hershko A, Pagano M. SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nat Cell Biol. 1999 ;1(4):193-9.
78. Sutterluty H, Chatelain E, Marti A, Wirbelauer C, Senften M, Muller U. p45SKP2 promotes p27Kip1 degradation and induces S phase in quiescent cells. Nat Cell Boil 1999;1:207-14.
79. Winston JT, Koepp DM, Elledge SJ, Harper JW. A family of mammalian F-box proteins. Curr Biol 1999;9(20):1180-2.
80. Patton EE, Willems AR, Tyers M. Combinatorial control in ubiquitin-dependent proteolysis: don't Skp the F-box hypothesis. Trends Genet. 1998;14(6):236-43.
81. Montagnoli A,Fiore F, Eytan E, Carrano AC, Draetta GF, Hershko A, PAgano M. Ubiquitination of p27 is regulated by Cdk-dependent phosphorylation and trimeric complex formation. Genes Dev. 1999;13(9):1181-9.
82. Vlach J, Hennecke S, Amati B. Phosphorylation-dependent degradation of the cyclin-dependent kinase inhibitor p27. EMBO J. 1997;16(17):5334-44.
83. Seeliger MA, Breward SE, Friedler A, Schon O, Itzhaki LS. Cooperative organization in a macromolecular complex. Nat Struct Biol 2003;10(9):718-24.
84. Shapira M, Ben-Izhak O, Linn S, Futerman B, Minkov I, Hershko DD. The prognostic impact of the ubiquitin ligase subunits Skp2 and Cks1 in colorectal carcinoma. Cancer. 2005;103(7):1336-46.
85. Yang G, Ayala G, De Marzo A, Tian W, Frolov A, Wheeler TM, Thompson TC, Harper JW. Elevated Skp2 protein expression in human prostate cancer: association with loss of the cyclin-dependent kinase inhibitor p27 and PTEN and with reduced recurrence-free survival. Clin Cancer Res. 2002;8(11):3419-26.
86. Signoretti S, Di Marcotullio L, Richardson A, Ramaswamy S, Isaac B, Rue M, Monti F, Loda M, Pagano M. Oncogenic role of the ubiquitin ligase subunit Skp2 in human breast cancer. J Clin Invest. 2002;110(5):633-41.
87. Traub F, Mengel M, Lück HJ, Kreipe HH, von Wasielewski R. Prognostic impact of Skp2 and p27 in human breast cancer. Breast Cancer Res Treat. 2006;99(2):185-91.
88. Li SH, Li CF, Sung MT, Eng HL, Hsiung CY, Huang WW, Lin CN, Yu SC, Huang HY. Skp2 is an independent prognosticator of gallbladder carcinoma among p27(Kip1)-interacting cell cycle regulators: an immunohistochemical study of 62 cases by tissue microarray. Mod Pathol. 2007 Apr;20(4):497-507.
89. Langner C, von Wasielewski R, Ratschek M, Rehak P, Zigeuner R. Expression of p27 and its ubiquitin ligase subunit Skp2 in upper urinary tract transitional cell carcinoma. Urology. 2004;64(3):611-6.
90. Kudo Y, Kitajima S, Sato S, Miyauchi M, Ogawa I, Takata T. High expression of S-phase kinase-interacting protein 2, human F-box protein, correlates with poor prognosis in oral squamous cell carcinomas. Cancer Res. 2001;61(19):7044-7.
91. Shintani S, Li C, Mihara M, Hino S, Nakashiro K, Hamakawa H. Skp2 and Jab1 expression are associated with inverse expression of p27(KIP1) and poor prognosis in oral squamous cell carcinomas. Oncology. 2003;65(4):355-62.
92. Masuda TA, Inoue H, Sonoda H, Mine S, Yoshikawa Y, Nakayama K, Nakayama K, Mori M. Clinical and biological significance of S-phase kinase-associated protein 2 (Skp2) gene expression in gastric carcinoma: modulation of malignant phenotype by Skp2 overexpression, possibly via p27 proteolysis. Cancer Res. 2002;62(13):3819-25.
93. Oliverira AM, Okuno SH, Nascimento AG, Lloyd RV. Skp2 protein expression in soft tissue sarcomas. J Clin Oncol. 2003;21(4):722-7.
94. Lim MS, Adamson A, Lin Z, Perez-Ordonez B, Jordan RC, Tripp S, Perkins SL, Elenitoba-Johnson KS. Expression of Skp2, a p27(Kip1) ubiquitin ligase, in malignant lymphoma: correlation with p27(Kip1) and proliferation index. Blood. 2002;100(8):2950-6.
95. Ganoth D, Bornstein G, Ko TK, Larsen B, Tyers M, Pagano M, Hershko A. The cell-cycle regulatory protein Cks1 is required for SCF(Skp2)-mediated ubiquitinylation of p27. Nat Cell Biol. 2001;3(3):321-4.
96. Hayles J, Beach D, Durkacz B, Nurse P. The fission yeast cell cycle control gene cdc2: isolation of a sequence suc1 that suppresses cdc2 mutant function. Mol Gen Genet. 1986;202(2):291-3.
97. Hadwiger JA, Wittenberg C, Mendenhall MD, Reed SI.. The Saccharomyces cerevisiae CKS1 gene, a homolog of the Schizosaccharomyces pombe suc1+ gene, encodes a subunit of the Cdc28 protein kinase complex. Mol Cell Biol. 1989 May;9(5):2034-41.
98. Bourne Y, Watson MH, Hickey MJ, Holmes W, Rocque W, Reed SI, Tainer JA. Crystal structure and mutational analysis of the human CDK2 kinase complex with cell cycle-regulatory protein CksHs1. Cell. 1996 Mar 22;84(6):863-74.
99. Spruck C, Strohmaier H, Watson M, Smith AP, Ryan A, Krek TW, Reed SI. A CDK-independent function of mammalian Cks1: targeting of SCF(Skp2) to the CDK inhibitor p27Kip1. Mol Cell. 2001;7(3):639-50.
100. Bartek J, Lukas J. p27 destruction: Cks1 pulls the trigger. Nat Cell Biol. 2001;3(4):E95-8.
101. Sitry D, Seeliger MA, Ko TK, Ganoth D, Breward SE, Itzhaki LS, Pagano M, Hershko A. Three different binding sites of Cks1 are required for p27-ubiquitin ligation.
J Biol Chem. 2002;277(44):42233-40.
102. Masuda TA, Inoue H, Nishida K, Sonoda H, Yoshikawa Y, Kakeji Y, Utsunomiya T, Mori M. Cyclin-dependent kinase 1 gene expression is associated with poor prognosis in gastric carcinoma. Clin Cancer Res. 2003;9(15):5693-8.
103. Inui N, Kitagawa K, Miwa S, Hattori T, Chida K, Nakamura H, Kitagawa M. High expression of Cks1 in human non-small cell lung carcinomas. Biochem Biophys Res Commun. 2003;303(3):978-84.
104. Slotky M, Shapira M, Ben-Izhak O, Linn S, Futerman B, Tsalic M, Hershko DD. The expression of the ubiquitin ligase subunit Cks1 in human breast cancer. Breast Cancer Res. 2005;7(5):R737-44.
105. Shapira M, Ben-Izhak O, Bishara B, Futerman B, Minkov I, Krausz MM, Pagano M, Hershko DD. Alterations in the expression of the cell cycle regulatory protein cyclin kinase subunit 1 in colorectal carcinoma. Cancer. 2004;100(8):1615-21.
106. Kitajima S, Kudo Y, Ogawa I, Bashir T, Kitagawa M, Miyauchi M, Pagano M, Takata T. Role of Cks1 overexpression in oral squamous cell carcinomas: cooperation with Skp2 in promoting p27 degradation. Am J Pathol. 2004;165(6):2147-55.
107. Richardson HE, Stueland CS, Thomas J, Russell P, Reed SI. Human cDNAs encoding homologs of the small p34Cdc28/Cdc2-associated protein of Saccharomyces cerevisiae and Schizosaccharomyces pombe. Genes Dev. 1990;4(8):1332-44.
108. Hattori T, Kitagawa K, Uchida C, Oda T, Kitagawa M. Cks1 is degraded via the ubiquitin-proteasome pathway in a cell cycle-dependent manner. Genes Cells. 2003;8(11):889-96.
109. Koga H, Harada M, Ohtsubo M, Shishido S, Kumemura H, Hanada S, Taniguchi E, Yamashita K, Kumashiro R, Ueno T, Sata M. Troglitazone induces p27Kip1-associated cell-cycle arrest through down-regulating Skp2 in human hepatoma cells. Hepatology. 2003;37(5):1086-96.
110. Motomura W, Takahashi N, Nagamine M, Sawamukai M, Tanno S, Kohgo Y, Okumura T. Growth arrest by troglitazone is mediated by p27Kip1 accumulation, which results from dual inhibition of proteasome activity and Skp2 expression in human hepatocellular carcinoma cells. Int J Cancer. 2004;108(1):41-6.
111. Halfter H, Friedrich M, Resch A, Kullmann M, Stögbauer F, Ringelstein EB, Hengst L. Oncostatin M induces growth arrest by inhibition of Skp2, Cks1, and cyclin A expression and induced p21 expression. Cancer Res. 2006;66(13):6530-9.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code