Responsive image
博碩士論文 etd-0815107-160236 詳細資訊
Title page for etd-0815107-160236
論文名稱
Title
第一篇:靜態液面下微氣泡或微液滴之通用相圖與力學分析 ; 第二篇:以相圖探討微氣泡之控制
Part I:Universal Phase and Force Diagrams for a Microbubble or Pendant Drop in Static Fluid on a Surface ; Part II:A Microbubble Control Described by a General Phase Diagram
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
163
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-06-29
繳交日期
Date of Submission
2007-08-15
關鍵字
Keywords
接合漸近展開法、微擾法、相圖、氣泡成長、微氣泡升力圖、微氣泡相圖、微氣泡控制、微氣泡成長
method of matched asymptotic expansion, phase diagram, perturbation method, Bubble growth, microbubble phase diagram, microbubble lift force diagram, microbubble control, microbubble growth
統計
Statistics
本論文已被瀏覽 5662 次,被下載 0
The thesis/dissertation has been browsed 5662 times, has been downloaded 0 times.
中文摘要
第一篇:
本文之目的在於發展一套無因次的三維微氣泡通用相圖與其升力圖。由此,我們將能針對靜態液面下平板上或孔洞上的微氣泡(或懸掛型液滴)進行分析。微氣泡動力學是相當重要的一項研究,因為它在微米及奈米科技中,同時支配著質量、動量、能量以及濃度的傳輸率。在本文中,我們將利用O’Brien(1991)所發展的氣泡外型方程式,來求取無因次的微氣泡相圖與力學圖,而方程式將取至二階微小Bo(Bond number)的精度。以Bo和接觸角(或底部半徑)兩個獨立參數來求取靜態以及動態的微氣泡之無因次相圖與受力圖。相圖依微氣泡的外形而分為三個區域,氣泡頂端到反曲點為第一區,反曲點至頸部為第二區,頸部至氣泡底部為第三區,微氣泡的成長、瓦解、脫離與塌陷包埋都能在相圖中獲得描述。升力包含有浮力、氣泡底部氣體與靜壓的壓差、毛細壓力以及因圓周變化所造成的表面張力所組成。因圓周變化所造成的表面張力效應是將微氣泡附著於固體表面的主因,而此項效應對微氣泡的影響則尚未被相關文獻所提出。調整底部半徑來控制微氣泡靜態與動態的行為,將比調整Bo來得更有效率。

第二篇:
本文之目的在於提出一套能控制靜態液體中位於平面上微氣泡(或微液滴)狀態以及成長的一般相圖(general phase diagrams)。微氣泡ㄧ直以來常被用於觀察在微米與奈米技術中對於傳輸現象的影響。在本文中,我們將利用Young-Laplace方程式的微擾解求得氣泡形狀方程式,並配合截斷誤差取至二階微擾解而得到一廣泛的三維氣泡相圖,此三維相圖由距離氣泡頂端的無因次曲率半徑R(0)、氣泡接觸角 及氣泡底部半徑 所組成,且在一特定Bo之下為唯一。我們可以在相圖上任意選擇起始與終止的狀態點(state),兩狀態間可有多條路徑稱為過程(process),藉由在相圖上選擇不同的路徑而能達到控制氣泡成長、衰敗或者脫離表面的目的。此外,我們更引進一套能適用於所有Bo下的通用相圖(universal phase diagram)。
Abstract
Part I:
The present work is to calculate dimensionless three-dimensional universal phase and lift force diagrams for a microbubble or pendant drop in a static liquid on a solid surface or orifice. Studying microbubble dynamics is important due to its controlling mass, momentum, energy and concentration transfer rates encountered in micro- and nano-sciences and technologies. In this work, dimensionless phase and force diagrams are presented by applying an equation for microbubble shape to accuracy of the second order of small Bond number provided by O’Brien (1991). Two dimensionless independent parameters, Bond number and contact angle (or base radius), are required to determine dimensionless phase and force diagrams governing static and dynamic states of a microbubble. The phase diagram divides the microbubble surface into three regions, the apex to inflection, inflection to neck, and neck to the edge of microbubble. The growth, collapse, departure and entrapment of a microbubble on a surface thus can be described. The lift forces include hydrostatic buoyancy, difference in gas and hydrostatic pressures at the microbubble base, capillary pressure and surface tension resulted from variation of circumference. The force to attach the microbubble to solid surface is the surface tension resulted from variation of circumference, which is not accounted for in literature. Adjusting the base radius to control static and dynamic behaviors of a microbubble is more effective than Bond number.

Part II:
Controlling states and growth of a microscale bubble (or pendant drop) in a static liquid on a surface by introducing general phase diagrams is proposed. Microbubbles are often used to affect transport phenomena in micro- and nano-technologies. In this work, a general phase diagram is provided by applying a perturbation solution of Young-Laplace equation for bubble shape with truncation errors of the second power of small Bond number. The three-dimensional phase diagram for a given Bond number is uniquely described by the dimensionless radius of curvature at the apex, contact angle and base radius of the microbubble. Provided that initial and end states are chosen, adjusting two of them gives the desired states and growth, decay and departure of the bubble described by path lines in the phase diagram. A universal three-dimensional phase diagram for a microbubble is also introduced.
目次 Table of Contents
第一篇:
中文摘要…………………………………………………Ⅰ
英文摘要…………………………………………………Ⅱ
謝誌………………………………………………………Ⅲ
目錄………………………………………………………Ⅴ
圖目錄……………………………………………………Ⅶ
符號說明…………………………………………………Ⅸ

第一章 緒論……………………………………………1
1.1 前言…………………………………………………1
1.2 本文架構……………………………………………7

第二章 理論模型之假設與分析………………………8
2.1 系統模型與假設…………………………………8
2.2 氣泡力平衡分析…………………………………9
2.2.1 氣泡表面力平衡………………………………10
2.2.2 氣泡內部之動量方程式………………………12
2.2.3 氣泡體積式……………………………………15
2.2.4無因次化………………………………………17
2.3 微氣泡分析………………………………………22
2.3.1 微氣泡在不同Bo下的各方向曲率……………22
2.3.2 通用微氣泡相圖………………………………24
2.3.3 微氣泡的頸部半徑 與頸部高度 ………………24
2.3.4 微氣泡力學與體積相圖………………………25
2.4 印證文獻數據………………………………………25

第三章 結果與討論……………………………………39
第四章 結論……………………………………………45

參考文獻…………………………………………………47
附錄………………………………………………………53

第二篇:
中文摘要…………………………………………………Ⅰ
英文摘要…………………………………………………Ⅱ
目錄………………………………………………………Ⅲ
圖目錄……………………………………………………Ⅵ
符號說明…………………………………………………Ⅷ
第一章 緒論……………………………………………1
1.1 前言…………………………………………………1
1.2 本文架構……………………………………………8

第二章 基本理論介紹與推導…………………………9
2.1 氣泡成長之理論模型與假設……………………9
2.2 曲率與Young-Laplace 方程式 ………………10
2.3 Young-Laplace equation參數式……………13

第三章 氣泡外型之微擾解……………………18
3.1 微擾法…………………………………………18
3.2 統御方程式與邊界條件………………………19
3.3 外部解…………………………………………22
3.4 內部解…………………………………………27
3.5 頸部解…………………………………………29
3.6 底部邊界層解…………………………………30
3.7 接合漸進展開法………………………………32
3.7.1 接合外部與上邊界層解……………………33
3.7.2 接合下邊界層解與頸部解…………………34
3.7.3 接合頸部解與底部邊界層解………………35
3.8 組合解……………………………………………36
3.8.1 第一區之組合解……………………………36
3.8.2 第二區之組合解……………………………37
3.8.3 第三區之組合解……………………………37
3.9 氣泡三區之組合解………………………………38

第四章 氣泡相圖與分析………………………………44
4.1 定義參數…………………………………………44
4.2 R(0)與L的關係…………………………………46
4.3 微氣泡相圖………………………………………47
4.4 通用的微氣泡相圖………………………………48
4.5 微氣泡相圖的分析與應用………………………50
4.6 微氣泡的頸部半徑 與頸部高度 …………………53
4.7 氣泡各方向之曲率值………………………………54

第五章 結論與討論……………………………………67
第六章 結論……………………………………………71

參考文獻…………………………………………………73
參考文獻 References
Part I:
1. K. E. Forster, and R. Greif, 1959, “Heat transfer to a boiling liquid: mechanism and correlation,” J. Heat Transfer, Vol. 81, pp. 43-53.
2. R. Cole, 1974, “Boiling Nucleation,” Advances in Heat Transfer, Vol. 10, Academic, New York.
3. V. P. Carey, 1992, Liquid-Vapor Phase Change Phenomena, Taylor and Francis, New York.
4. V. K. Dhir, 1998, “Boiling Heat Transfer,” Annual Reviews of Fluid Mechanics, Vol. 30, pp. 365-401.
5. J. R. Thome, 2004, “Boiling in Microchannels: A Review of Experiment and Theory,” International J. Heat and Fluid Flow, Vol. 25, pp. 128-139.
6. Wang, H., Peng, X. F., Wang, B. X., Lin, W. K., and Pan, C., 2005, “Experimental Observations of Bubble Dynamics on Ultrathin Wires,” Experimental Heat Transfer, Vol. 18, pp. 1-11.
7. M. S. Plesset, and A. Prosperetti, 1977, “Bubble Dynamics and Cavitation,” Annual Review of Fluid Mechanics, Vol. 9, pp. 145-185.
8. M.V. A. Bianchi, and R. Viskanta, 1999, “The effect of air bubbles on the diffusion-controlled solidification of water and aqueous solutions of ammonium chloride,” Int. J. Heat and Mass Transfer, Vol. 42, pp. 1097-1110.
9. Wei, P. S., Huang, C. C. and Lee, K. W., 2003, “Nucleation of bubbles on a solidification front-experiment and analysis,” Metallurgical and Materials Transactions B, Vol. 34B, pp. 321-332.
10. Herman, C., and Iacona, E., 2004, “Modeling of Bubble Detachment in Reduced Gravity Under the Influence of Electric Fields and Experimental Verification,” Heat and Mass Transfer, Vol. 40, pp. 943-957.
11. Tseng, F. G., Kim, C. J., and Ho, C. M., 2002, “A high-resolution high-frequency monolithic top-shooting microinjector free of satellite drops- part I: concept, design, and model,” J. Micro electro mechanical Systems, Vol. 11, pp. 427-436.
12. Geng, X., Yuan, H., , H. N., and Prosperetti, A., 2001, “Bubble-based micropump for electrically conducting liquids,” J. Micromechanics and Microengineering, Vol. 11, pp. 270-276.
13. Lin, L., and Pisano, A. P., 1994, “Thermal bubble powered microactuators,” Microsystem Technologies, Vol. 1, pp. 51-58.
14. Papavasiliou, A. P., Liepmann, D., and Pisano, A. P., 1999, “Fabrication of free floating silicon gate valve,”Proceedings of the ASME-MEMS Int. Mech. Eng. Congr. Expo., Nov. 14-19, 1999, Nashville, Tennessee, Vol. 1, pp. 435-440.
15. Papavasiliou, A. P., Pisano, A. P., and Liepmann, D., 2001, “High-speed and bi-stable electrolysis-bubble actuated gate valves, ” Proceedings of the 11th Int. Conf. Solid State Sensors and Actuators, Munich, Germany, June 10-14, 2001, pp. 940-943.
16. Jackel, J. L., Johnson, J. J., and Tomlinson, W. J., 1990, “Bistable optical switching using electrochemically generated bubbles,” Optics Letters, Vol. 15, pp. 1470-1472.
17. Lin, L., 1998, “Microscale thermal bubble formation: thermophysical phenomena and applications,” Microscale Thermophysical Engineering, Vol. 2, pp. 71-85.
18. Postema, M., and Schmitz, G., 2006, “Bubble dynamics involved in ultrasonic imaging,” Expert Review of Molecular Diagnostics, Vol. 6, pp. 493-502.
19. Dijkmans, P. A., Juffermans, L. J. M., Musters, R. J. P., van Wamel, A., ten Gate, F. J., van Gilst, W., Visser, C. A., de Jong, N., and Kamp, O., 2004, “Microbubbles and ultrasound: from diagnosis to therapy,” European J. Echocardiography, Vol. 5, pp. 245-256.
20. Kodama, Y., Kakugawa, A., Takahashi, T. and Kawashima, H., 2000, “Experimental study on microbubbles and their applicability to ships for skin friction reduction,” International J. Heat and Fluid Flow, Vol. 21, pp. 582-588.
21. Crum, L. A., 1994, “Sonoluminescence,” Physics Today, Vol. 47, pp. 22-29.
22. Thompson, L. H., and Doraiswamy, L. K., 1999, “Sonochemistry: science and engineering,” Industrial and Engineering Chemistry Research, Vol. 38, pp. 1215-1249.
23. Ohl, C. D., Arora, M., Dijkink, R., Janve, V., and Lohse, D., 2006, “Surface cleaning from laser-induced cavitation bubbles,” Applied Physics Letters Vol. 89, pp. 074102-1- 074102-3.
24. Cui, Z. F., Chang, S., and Fane, A. G., 2003, “The use of gas bubbling to enhance membrane processes,” J. Membrane Science, Vol. 221, pp. 1-35.
25. Prakash, M., and Gershenfeld, N., 2007, “Microfluidic bubble logic,” Science, Vol, 315, pp. 832-835.
26. McCann, D. J., and R. G. H. Prince, 1971, “Regimes of Bubbling at a Submerged Orifice,” Chemical Engineering Science, Vol. 26, pp. 1505-1512.
27. Juric, D., and Tryggvason, G., 1998, “Computations of Boiling Flows,” International J. Multiphase Flow, Vol. 24, pp. 387-410.
28. Welch, S. W. J., and Wilson, J., 2000, “A Volume of Fluid Based Method for Fluid Flows with Phase Change,” J. Computational Physics, Vol. 160, pp. 662-682.
29. Son, G., and Dhir, V. K., 1998, “Numerical Simulation of Film Boiling Near Critical Pressures with a Level Set Method,” J. Heat Transfer, Vol. 120, pp.183-192.
30. Yoon, H. Y., Koshizuka, S., and Oka, Y., 2001, “Direct Calculation of Bubble Growth, Departure, and Rise in Nucleate Pool Boiling,” International J. Multiphase Flow, Vol. 27, pp. 277-298.
31. Yang, Z. L., Dinh, T. N., Nourgaliev, R. R., and Sehgal, B. R., 2001, “Numerical Investigation of Bubble Growth and Detachment by the Lattice-Boltzmann Method,” International J. Heat and Mass Transfer, Vol. 44, pp. 195-206.
32. Xiao, Z., and Tan, R. B. H., 2005, “An Improved Model for Bubble Formation using the Boundary-Integral Method,” Chemical Engineering Science, Vol. 60, pp. 179-186.
33. Esmaeeli, A., and Tryggvason, G., 2004, “Computations of Film Boiling. Part I: Numerical Method,” International J. Heat and Mass Transfer, Vol. 47, pp. 5451-5461.
34. Shin, S., and Juric, D., 2002, “Modeling Three-Dimensional Multiphase Flow Using a Level Contour Reconstruction Method for Front Tracking without Connectivity,” J. Computational Physics, Vol. 180, pp. 427-470.
35. Hong, Y., Ashgriz, N., Andrews, J., and Parizi, H., 2004, “Numerical Simulation of Growth and Collapse of a Bubble Induced by a Pulsed Microheater,” J. Microelectromechanical Systems, Vol. 13, pp. 857-869.
36. van Sint Annaland, M., Deen, N. G., and Kuipers, J. A. M., 2005, “Numerical Simulation of Gas Bubbles Behaviour Using a Three-Dimensional Volume of Fluid Method,” Chemical Engineering Science, Vol. 60, pp. 2999-3011.
37. Chesters, A. K., 1978, “Modes of Bubble Growth in the Slow- Formation Regime of Nucleate Pool Boiling,” International J. Multiphase Flow, Vol. 4, pp. 279-302.
38. Chesters, A. K., 1977, “An Analytical Solution for the Profile and Volume of a Small Drop or Bubble Symmetrical about a Vertical Axis,” J. Fluid Mechanics, Vol. 81, pp. 609-624.
39. Gnyloskurenko, S. V., Byakova, A. V., Raychenko, O. I., and Nakamura, T., 2003, “Influence of Wetting Conditions on Bubble Formation at Orifice in an Inviscid Liquid. Transformation of Bubble Shape and Size,” Colloids and Surfaces A: Physicochem. Eng. Aspects, Vol. 218, pp. 73-87.
40. Gerlach, D., Biswas, G., Durst, F., and Kolobaric, V., 2005, “Quasi-Static Bubble Formation on Submerged Orifices,” Int. J. Heat and Mass Transfer, Vol. 48, pp. 425-438.
41. Byakova, A. V., Gnyloskurenko, S. V., Nakamura, T., and Raychenko, O. I., 2003, “Influence of Wetting Conditions on Bubble Formation at Orifice in an Inviscid Liquid Mechanism of Bubble Evolution,” Colloids and Surfaces A: Physiochem. Eng. Aspects, Vol. 229, pp. 19-32.
42. Davidson, J. F., and , B. O. G., 1960, “Bubble Formation at an Orifice in an Inviscid Liquid,” Trans. Instn. Chem. Eng., Vol. 38, pp. 335-342.
43. Kumar, R., and Kuloor, N. R., 1970, “The Formation of Bubbles and Drops,” Advances in Chemical Engineering, (T. B. Drew, G. R. Cokelet, J. W. Hoopes, Jr., and T. Vermeulen, eds.), Vol. 8, Academic Press, New York, pp. 255-368.
44. Wraith, A. E., 1971, “Two Stage Bubble Growth at a Submerged Plate Orifice,” Chemical Engineering Science, Vol. 26, pp. 1659-1671.
45. Li, R. Q., and Harris, R., 1993, “Bubble Formation from a Very Narrow Slot,” Canadian Metallurgical Quarterly, Vol. 32, pp. 31-37.
46. N., and Vogelpohl, A., 1986, “Bubble Formation and Its Movement in Newtonian and Non-Newtonian Liquids,” Encyclopedia of Fluid Mechanics, Vol. 3, pp. 59-88.
47. O’Brien, S. B. G., 1991, “On the Shape of Small Sessile and Pendant Drops by Singular Perturbation Techniques,” J. Fluid Mechanics, Vol. 233, pp. 519-537.

Part II:
1. Thome, J. R., 2004, “Boiling in Microchannels: A Review of Experiment and Theory,” International J. Heat and Fluid Flow, Vol. 25, pp. 128-139.
2. Kantarci, N., Borak, F., and Ulgen, K. O., 2005, “Bubble column reactors,” Process Biochemistry, Vol. 40, pp. 2263-2283.
3. Klein, J., Godo, ., Dolgo , O., and Marko , J., 2001, “Effect of a gas-liquid separator on the hydrodynamics and circulation flow regimes in internal-loop airlift reactors,” J. Chemical Technology and Biotechnology, Vol. 76, pp. 516-524.
4. Rubio, J., Souza, M. L., and Smith, R. W., 2002, “Overview of flotation as a wastewater treatment technique,” Minerials Engineering, Vol. 15, pp. 139-155.
5. Caupin, F., and Herbert, E., 2006, “Cavitation in water: a review,” Comptes Rendus Physique, Vol. 7, pp. 1000-1017.
6. Kodama, Y., Kakugawa, A., Takahashi, T., and Kawashima, H., 2000, “Experimental study on microbubbles and their applicability to ships for skin friction reduction,” International J. Heat and Fluid Flow, Vol. 21, pp. 582-588.
7. Crum, L. A., 1994, “Sonoluminescence,” Physics Today, Vol. 47, pp. 22-29.
8. Thompson, L. H., and Doraiswamy, L. K., 1999, “Sonochemistry: science and engineering,” Industrial and Engineering Chemistry Research, Vol. 38, pp. 1215-1249.
9. Ohl, C. D., Arora, M., Dijkink, R., Janve, V., and Lohse, D. 2006, “Surface cleaning from laser-induced cavitation bubbles,” Applied Physics Letters, Vol. 89, pp. 074102-1- 074102-3.
10. Cui, Z. F., Chang, S. and Fane, A. G., 2003, “The use of gas bubbling to enhance membrane processes,” J. Membrane Science, Vol. 221, pp. 1-35.
11. Winkler, O., 1970, “Degassing kinetics of molten metals in vacuum,” J. Vacuum Science and Technology, Vol. 7, pp. 14-21.
12. Turkdogan, E. T., 1980, “Physical Chemistry of High Temperature Technology,” Academic Press, New York.
13. Lotun, D., and Pilon, L., 2005, “Physical modeling of slag foaming for various operating conditions and slag compositions,” ISIJ International, Vol. 45, pp. 835-840.
14. Zhang, L. F., and Taniguchi, S., 2000, “Fundamentals of inclusion removal from liquid steel by bubble flotation,” International Materials Reviews, Vol. 45, pp. 59-82.
15. Wei, P. S., Huang, C. C., and Lee, K. W., 2003, “Nucleation of bubbles on a solidification front-experiment and analysis,” Metallurgical and Materials Transactions B, Vol. 34B, pp. 321-332.
16. Tseng, F. G., Kim, C. J., and Ho, C. M., 2002, “A high-resolution high-frequency monolithic top-shooting microinjector free of satellite drops- part I: concept, design, and model,” J. Microelectro mechanical Systems, Vol. 11, pp. 427-436.
17. Geng, X., Yuan, H., , H. N., and Prosperetti, A., 2001, “Bubble- based micropump for electrically conducting liquids,” J. Micromechanics and Microengineering, Vol. 11, pp. 270-276.
18. Lin, L., and Pisano, A. P., 1994, “Thermal bubble powered microactuators,” Microsystem Technologies, Vol. 1, pp. 51-58.
19. Papavasiliou, A. P., Liepmann, D., and Pisano, A. P., 1999, “Fabrication of free floating silicon gate valve,” Proceedings of the ASME-MEMS Int. Mech. Eng. Congr. Expo., Nov. 14-19, 1999, Nashville, Tennessee, Vol. 1, pp. 435-440.
20. Lin, L., 1998, “Microscale thermal bubble formation: thermophysical phenomena and applications,” Microscale Thermophysical Engineering, Vol. 2, pp. 71-85.
21. Postema, M., and Schmitz, G., 2006, “Bubble dynamics involved in ultrasonic imaging,” Expert Review of Molecular Diagnostics, Vol. 6 pp. 493-502.
22. Dijkmans P A, Juffermans L J M, Musters R J P, van Wamel A, ten Gate F J, van Gilst W, Visser C A, de Jong N and Kamp O 2004 Microbubbles and ultrasound: from diagnosis to therapy European J. Echocardiography 5 245-256.
23. Papavasiliou, A. P., Pisano, A. P., and Liepmann, D., 2001, “High-speed and bi-stable electrolysis-bubble actuated gate valves,” Proceedings of the 11th Int. Conf. Solid State Sensors and Actuators, Munich, Germany, June 10-14, 2001, pp. 940-943.
24. Jackel, J. L., Johnson, J. J., and Tomlinson, W. J., 1990, “Bistable optical switching using electrochemically generated bubbles,” Optics Letters, Vol. 15, pp. 1470-1472.
25. Prakash, M., and Gershenfeld, N., 2007, “Microfluidic bubble logic,” Science, Vol. 315, pp. 832-835.
26. Chesters, A. K., 1978, “Modes of bubble growth in the slow- formation regime of nucleate pool boiling,” International J. Multiphase Flow, Vol. 4, pp. 279-302.
27. Chesters, A. K., 1977, “An analytical solution for the profile and volume of a small drop or bubble symmetrical about a vertical axis,” J. Fluid Mechanics, Vol. 81, pp. 609-624.
28. Gerlach, D., Biswas, G., Durst, F., and Kolobaric, V., 2005, “Quasi static bubble formation on submerged orifices,” Int. J. Heat and Mass Transfer, Vol. 48, pp. 425-438.
29. O’Brien, S. B. G., 1991, “On the shape of small sessile and pendant drops by singular perturbation techniques,” J. Fluid Mechanics, Vol. 233, pp. 519-537.
30. Bashforth, F., and Adams, J. C., 1883, An Attempt to Test the Theories of Capillary Action, Cambridge University Press, London.
31. Garandet, J. P., Drevet, B., and Eustathopoulos, N., 1998, “On the validity of Young’s equation in the presence of gravitational and other external force fields,” Scripta Materialia, Vol. 38, pp. 1391-1397.
32. Plesset, M. S., and Prosperetti, A., 1977, “Bubble dynamics and cavitation,” Annual Review of Fluid Mechanics, Vol. 9, pp. 145-185.
33. 廖世俊,2006,超越攝動-同倫分析方法與導論,科學出版社
34. A. H. Nayfeh., 1981, Introduction to Perturbation Techniques, Wiley, New York.
35. Van Dyke, M., 1975, Perturbation Methods in Fluid Mechanics, Parabolic Press, Stanford, California.
36. M. D. Greenberg, 1978, Foundations of Applied Mathematics, Englewood Cliffs, N.J., Prentice Hall.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.118.150.80
論文開放下載的時間是 校外不公開

Your IP address is 18.118.150.80
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code