Responsive image
博碩士論文 etd-0815108-145431 詳細資訊
Title page for etd-0815108-145431
論文名稱
Title
石英玻璃模仁於奈米壓印之研究
Study of nanoimprint process by quartz glass mold
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
107
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-07-17
繳交日期
Date of Submission
2008-08-15
關鍵字
Keywords
石英玻璃、填充率、奈米製造、奈米壓印
Quartz Glass, Nanoimprint, Nanofabrication, Filling Rate
統計
Statistics
本論文已被瀏覽 5683 次,被下載 5472
The thesis/dissertation has been browsed 5683 times, has been downloaded 5472 times.
中文摘要
本研究系探討以聚焦離子束技術(FIB)製作之半節距200nm以下之石英玻璃柵型結構模仁於高分子材料上的壓印技術。我們以FIB製作不同深度及寬度之奈米溝槽結構模仁,研究這些模仁對於高分子光阻材料SU-8壓印製程的適當壓力與溫度。為求達到最佳之壓印結果以獲得最佳之壓印參數,因此設計實驗以針對不同壓印之參數進行探討:例如其脫模劑長成方式、壓印溫度、壓印壓力,以及脫模溫度並探討其影響。本研究成功在高分子材料SU-8上壓印出線寬約50nm柵型結構,實驗結果發現在壓印溫度高於Tg30℃且以恆壓方式進行壓印配合於室溫脫模較能得到較佳之壓印結構。AFM的量測顯示hp100nm以上的壓印皆能使材料完全填充溝槽。
Abstract
This study investigates sub 200nm half-pitch polymer structures by nanoimprint process. The trench structures were fabricated on quartz glass with various depths and widths by FIB. To investigate the best nanoimprint process on SU-8, we studied various parameters such as: imprinting temperature, imprinting pressure, and temperature for de-molding, etc.  This study had successfully defined 50nm width with different depths on to SU-8 by imprint.  Imprint temperature above Tg 30℃ with constant pressure on continuous impressing and de-mold in room temperature would result in better imprinting results. The filling rate of this nanoimprint technology was measured by atomic force microscopy.  For structures above/near 100nm half-pitch, the filling rate is nearly 100%.
目次 Table of Contents
目錄
目錄 I
圖目錄 V
表目錄 XI
中文摘要 XII
英文摘要 XIII
第一章緒論 1
1-1 研究背景 1
1-2 研究動機及目的 3
第二章奈米壓印技術 4
2-1 奈米壓印技術發展 5
2-1-1熱壓成形奈米壓印 5
2-1-2紫外光硬化成形奈米壓印 10
2-1-3軟微影技術 12
2-1-4雷射輔助直接壓印技術 14
2-2 壓印高分子材料 19
2-2-1熱塑性高分子材料 19
2-2-2光塑性高分子材料 19
2-3 自組單分子膜 20
第三章實驗儀器與材料及實驗方法和步驟 22
3-1 實驗儀器 22
3-1-1場發射型掃描式電子顯微鏡(JEOL-6330 SEM) 22
3-1-2環境掃描式電子顯微鏡(ESEM) 23
3-1-3原子力顯微鏡實驗機台(Atomic Force Microscopy; AFM) 24
3-1-4超音波清洗機 26
3-1-5全電式自動化壓印機(500K-1) 27
3-2 實驗材料 28
3-2-1模仁材料 28
3-2-2脫模劑 29
3-2-3壓印高分子材料 29
3-3 實驗方法 30
3-4 實驗步驟 31
3-4-1石英玻璃模仁製作 31
3-4-2脫模劑(自組裝抗沾黏劑)長成 37
3-4-3石英玻璃模仁壓印前準備 38
3-4-4高分子光阻塗佈 38
3-4-5軟烤(Soft Bake) 39
3-4-6壓印 40
3-4-7曝光 40
3-4-8曝光後烤(Post Bake) 40
3-4-9脫模 40
3-4-10模仁檢測 41
第四章實驗結果及探討 42
4-1脫模劑長成方式 42
4-1-1浸泡15分鐘方式 42
4-1-2蒸鍍15分鐘方式 43
4-2以壓力評估壓印情況(溫度固定) 44
4-2-1恆壓力進行壓印 44
4-2-2階段壓力進行壓印 47
4-3由壓印溫度探討 48
4-3-1高於Tg溫度15℃ 49
4-3-2高於Tg溫度30℃ 49
4-3-3高於Tg溫度45℃ 50
4-4高分子材料壓印後清洗狀況 52
4-5脫模方式 56
4-5-1壓印後高溫下脫模 56
4-5-2降至室溫下脫模 59
4-6壓印結果 63
第五章結論及未來期許 83
5- 1結論 83
5- 2未來展望 84
參考文獻 86

圖目錄
圖2-1:熱壓成形奈米壓印 6
圖2-2:紫外光硬化成形奈米壓印 11
圖2-3:軟微影技術 14
圖2-4:雷射輔助直接壓印技術 16
圖3-1:JEOL-6330 SEM 22
圖3-2:ESEM 23
圖3-3:DI 3100 AFM外觀 24
圖3-4:AR5-NCH-10探針之SEM [NANOSENSORS] 26
圖3-5:全電式自動化壓印機 500K-1 28
圖3-6:PFOTCS化學式 29
圖3-7:設計規劃之壓印圖案 32
圖3-8:AFM掃描模仁線寬約50nm深度約100nm之3D與輪廓圖 34
圖3-9:AFM掃描模仁線寬約75nm深度約200nm之3D與輪廓圖 34
圖3-10:AFM掃描模仁線寬約100nm深度約300nm之3D與輪廓圖 35
圖3-11:AFM掃描模仁線寬約150nm深度約100nm之3D與輪廓圖 35
圖3-12:AFM掃描模仁線寬約200nm深度約200nm之3D與輪廓圖 35
圖3-13:模仁設定深度與實際線寬之關係 36
圖3-14:模仁實際深度與設定深度之關係 36
圖3-15:模仁上脫模劑後情況 38
圖4-1:脫模劑浸泡式長成方式 42
圖4-2:脫模劑蒸鍍式長成方式 43
圖4-3:恆壓力壓印示意圖 44
圖4-4:恆壓力壓印方式4.5kg/cm²、85℃壓印之圖案 45
圖4-5:恆壓方式5 kg/cm²、85℃,壓力過大造成模仁破壞 46
圖4-6:階段壓力壓印示意圖 47
圖4-7:階段壓力壓印方式壓印之圖案 48
圖4-8:恆壓力4.5kg/cm²、85℃壓印之線寬約200nm 50
圖4-9:恆壓力4.5kg/cm²、85℃壓印之線寬約50nm 50
圖4-10:恆壓力4.5kg/cm²、100℃壓印之線寬約200nm 51
圖4-11:恆壓力4.5kg/cm²、100℃壓印之線寬約50nm 52
圖4-12:OM所照SU-8殘留 53
圖4-13:SEM所照SU-8殘留 53
圖4-14:模仁壓印後於丙酮清洗後光阻殘留物 55
圖4-15:模仁壓印後食人魚蝕刻液清洗後 56
圖4-16:線寬約100nm恆壓力4.5kg/cm²、85℃壓印、85℃脫模 57
圖4-17:線寬約100nm恆壓力4.5kg/cm²、85℃壓印、85℃脫模 58
圖4-18:線寬約50nm恆壓力4.5kg/cm²、85℃壓印、80℃脫模 58
圖4-19:線寬約50nm恆壓力4.5kg/cm²、85℃壓印、80℃脫模 59
圖4-20:線寬約200nm恆壓力4.5kg/cm²、85℃壓印於室溫脫模 60
圖4-21:線寬約200nm恆壓力4.5kg/cm²、85℃壓印於室溫脫模 61
圖4-22:線寬約100nm恆壓力4.5kg/cm²、85℃壓印於室溫脫模 62
圖4-23:壓印後於SEM掃描之眾多氣泡 63
圖4-24:壓印結構線寬262.4nm深度約300nm(寬200nm深300nm) 64
圖4-25:AFM掃描壓印線寬約241.24nm深度約233.69nm之3D與輪廓圖(寬200nm深300nm) 64
圖4-26:壓印結構線寬約204.1nm深度約200nm(寬200nm深200nm) 65
圖4-27:AFM掃描壓印線寬約242.93nm深度約140.78nm之3D與輪廓圖(寬200nm深200nm) 65
圖4-28:壓印結構線寬約230.2nm深度約100nm(寬200nm深100nm) 66
圖4-29:AFM掃描壓印線寬約240.63nm深度約59.872nm之3D與輪廓圖(寬200nm深100nm) 66
圖4-30:壓印結構線寬約160.3nm深度約300nm(寬150nm深300nm) 67
圖4-31:AFM掃描壓印線寬約194.55nm深度約233.51nm之3D與輪廓圖(寬150nm深300nm) 67
圖4-32:壓印結構線寬約192.4nm深度約200nm(寬150nm深200nm) 68
圖4-33:AFM掃描壓印線寬約194.14nm深度約139.65nm之3D與輪廓圖(寬150nm深200nm) 68
圖4-34:壓印結構線寬約186.5nm深度約100nm(寬150nm深100nm) 69
圖4-35:AFM掃描壓印線寬約181.96nm深度約57.65nm之3D與輪廓圖(寬150nm深100nm) 69
圖4-36:壓印結構線寬約108.2nm深度約300nm(寬100nm深300nm) 70
圖4-37:AFM掃描壓印線寬約144.27nm深度約221.82nm之3D與輪廓圖(寬100nm深300nm) 70
圖4-38:壓印結構線寬約125.6nm深度約200nm(寬100nm深200nm) 71
圖4-39:AFM掃描壓印線寬約128.69nm深度約148.02nm之3D與輪廓圖(寬100nm深200nm) 71
圖4-40:壓印結構線寬約125.3nm深度約100nm(寬100nm深100nm) 72
圖4-41:AFM掃描壓印線寬約128.06nm深度約57.797nm之3D與輪廓圖(寬100nm深100nm) 72
圖4-42:壓印結構線寬約105.1nm深度約300nm(寬75nm深300nm) 73
圖4-43:AFM掃描壓印線寬約122.83 nm深度約86.794nm之3D與輪廓圖(寬75nm深300nm) 73
圖4-44:壓印結構線寬約90.4nm深度約200nm(寬75nm深200nm) 74
圖4-45:AFM掃描壓印線寬約125.34nm深度約87.912nm之3D與輪廓圖(寬75nm深200nm) 74
圖4-46:壓印結構線寬約96.3nm深度約100nm(寬75nm深100nm) 75
圖4-47:AFM掃描壓印線寬約120.16nm深度約24.169nm之3D與輪廓圖(寬75nm深100nm) 75
圖4-48:壓印結構線寬約102nm深度約300nm(寬50nm深300nm) 76
圖4-49:AFM掃描壓印線寬約82.397nm深度約27.238nm之3D與輪廓圖(寬50nm深300nm) 76
圖4-50:壓印結構線寬約107.8nm深度約200nm(寬50nm深200nm) 77
圖4-51:AFM掃描壓印線寬約80.414nm深度約27.172nm之3D與輪廓圖(寬50nm深200nm) 77
圖4-52:壓印結構線寬約110.9nm深度約100nm(寬50nm深100nm) 78
圖4-53:AFM掃描壓印線寬約79.041nm深度約17.424nm之3D與輪廓圖(寬50nm深100nm) 78
圖4-54:線寬約50、75、100、150、200nm各深度之光阻填充率,圖中各尺寸第一點預設深度為100nm 、第二點預設深度為200nm、第三點預設為300nm 81
圖4-55:模仁與壓印結構輪廓比對,紅色為模仁黑色為壓印結構(線寬50nm,深度100nm) 81
圖4-56:模仁與壓印結構輪廓比對,紅色為模仁黑色為壓印結構(線寬50nm,深度200nm) 81
圖4-57:模仁與壓印結構輪廓比對,紅色為模仁黑色為壓印結構(線寬50nm,深度300nm) 81
圖4-58:模仁與壓印結構輪廓比對,紅色為模仁黑色為壓印結構(線寬100nm,深度300nm) 82
圖4-59:模仁與壓印結構輪廓比對,紅色為模仁黑色為壓印結構(線寬200nm,深度200nm) 82

表目錄
表2-1:常見自組裝分子及基材 21
表3-1:AFM儀器規格 25
表3-2:AR5-NCH-10之微懸臂規格 26
表3-3:常用光阻之工作參數 30
表3-4:設定之FIB加工之線條與間距寬度(單位:nm) 33
表3-5:FIB加工模仁後於AFM掃描之結構實際線寬與深度 34
表4-1:於AFM量測之模仁和壓印結構各尺寸的實際深度 79
參考文獻 References
Alù Andrea; Nader Engheta1, (2005),“Achieving transparency with plasmonic and metamaterial coatings”, Physical review, E.72, 016623.
Austin M D; Haixiong Ge; Wei Wu; Mingtao Li; Zhaoning Yu; D. Wasserman; S. A. Lyon; Stephen Y. Chou, (2004), “Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography”, Applied Physics Letters, Vol.84, No.26, pp.5299-5301.
Beck M.; M. Graczyk; I. Maximov; E. L. Sarwe; T. G. I. Ling; M.Keil; L. Montelius, (2001), “Improving nanoimprint lithography stamps for the 10 nm featur”, Proceedings of the 2001 1st IEEE Conference on Nanotechnology, pp. 17-22.
Bikash C. Gupta; Zhen Ye, (2003), ” Focusing of electromagnetic waves by periodic arrays of dielectric cylinders”, Phys. Rev. B.67, 153109.
Bouhelier A.; Huser, Th.; Tamaru, H.; Güntherodt, H.-J.; Pohl, D. W.; Baida, Fadi I.; van Labeke, D., (2001), “Plasmon optics of structured silver films”, Physical Review B, VOLUME 63, 155404.
Brien S O’, (2006),“Negative Refraction and Subdiffraction Imaging”, Tyndall National Institute, Cork, Republic of Ireland.
Brongersma, M.L.; Zia, R.; Schuller, J.A., (2007),“Plasmonics – the missing link between nanoelectronics and microphotonics”, Appl. Phys. A.89, pp.221–223 .
Buscha K.; G. von Freymannb; S. Lindenb; S.F. Mingaleeva,c; L. Tkeshelashvilia; M. Wegener; (2007),“Periodic nanostructures for photonics ”, Physics Reports, 444, pp.101 – 202.
C. Y. Chang; S. Y. Yang; J. L. Sheh, (2006), " A roller embossing process for rapid fabrication of microlens arrays", Microsyst. Technol. 12, pp.754–759.
Chen C. H.; Liu, C. P.; Lee, Y. C.; Hsiao, F. B.; Chiu, C. Y.; Chung, M. H.; Chiang M. H., (2006), “IR-Laser Assisted Micro/Nano-Imprinting” Journal of Micromechanics and Microengineering, Vol. 16, pp. 1463-1467.
Cheng Ming-Chieh; Yun-liang Hsueh; Hsung-Yu Chen; Cheng-Kuo Sung, (2006), “Length Effect on Formation of Metallic Patterns by Nanoimprinting Process –Molecular Dynamic Simulation”, Materials Science Forum, Vol.505–507, pp.133–138.
Chou S. Y.; Keimel C.; Gu J., (2002), "Ultrafast and direct imprint of nanostructures in silicon," Nature, Vol.417, pp.835-837.
Chou S. Y.; P. R. Krauss; P. J. Renstrom, (1995), “Imprint of sub-25nm vias and trenvhes in polymers,“Applied Physics Letter, Vol.67(21), pp.3114-3116.
Chou Stephen Y.; Peter R.krauss; Preston J. Rrnstrom, (1995), “Imprint of sub-25 nm vias and trenches in polymers”, Appl. Phys. Lett., Vol.67, pp.3114-3116.
Colburn M.; Johnson S.; Stewart M.; Damle S.; Bailey T.; Choi B.; Wedlake M.; Michaelson T.; Sreenivasan S.V.; Ekerdt J., (1999), “Step and flash imprint lithography: a new approach to high-resolution patterning”. Proc.SPIE, 3676, 379.
Eisert D.; Braun W.; Kuhn S.; Koeth J.; Forchel A., (1999), “Metal wire definition by high resolution imprint and lift-off”, Microelectronic Engineering, 46, pp.179-181.
Engheta Nader; Richard W.Ziolkowski, (2006), “Metamaterials Physics and Engineering Explorations”, Wiley Interscience”.
Engheta Nader, (2007), “Circuits with Light at Nanoscales: Optical Nanocircuits Inspired by Metamaterials”, Science, Vol.317, pp.1698-1702.
Gersteltec Engineering Solutions, http://www.gersteltec.ch/userfiles/1197836206.pdf.
Greenleaf, Allan; Kurylev, Yaroslav; Lassas, Matti; Uhlmann, Gunther, (2007), ”Electromagnetic Wormholes and Virtual Magnetic Monopoles from Metamaterials”, Physical Review Letters, 99, 183901.
Hirai Yoshihiko;Satoshi Yoshida; Nobuyuki Takagi, "Defect analysis in thermal nanoimprint lithography", J. Vac. Sci. Technol. B 21(6), 1071-1023/2003/21(6)/2765/6.
HU, W.; YANG, B.; PENG, C.; PANG, S.W., (2006), "Three-dimensional SU-8 structures by reversal UV imprint", Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 24, 2225.
Irci Erdinc; Vakur B. Erturk, (2007), “Achieving transparency and maximizing scattering with metamaterial-coated conducting cylinders”, Physical review, E.76, 056603.
Jelinek, L.; Machac, J.; Zehentner, J., (2007), ”Metamaterials - A Challenge for Contemporary Advanced Technology“,IEEE, 1-4244-0822-9.
Kettle J.,R.T. Hoyle, S. Dimov, R.M. Perks, (2008), “Fabrication of complex 3D structures using Step and Flash Imprint Lithography (S-FIL)”, Microelectronic Engineering 85 853-855
Lapine M.; S. Tretyakov, (2007), “Contemporary notes on metamaterials”, IET Microw. Antennas Propag., (1), pp.3–11, 1.
Lee JaeJong, SooYeon Park, KeeBong Choi, GeeHong Kim, (2008), “Nano-scale patterning using the roll typed UV-nanoimprint lithography tool”, Microelectronic Engineering 85 861–865.
Lee Jin-Hyung; Hyun-Woo Lim; Jin-Goo Park; Eun-Kyu Lee; Yangsun Kim,(2004), ”Effect of Polymer Substrate on Nano Scale Hot Embossing”, Mat.Res.Soc.Symp.Proc.Vol.782©2004 Materials Research Society.
Lee Jong-Hwa, Ki-yeon Yang, Sung-Hoon Hong, Heon Lee, Kyung-Woo Choi, (2008), “Fabrication of 70 nm narrow metal nanowire structure on flexible PET film by nanoimprint lithography”, Microelectronic Engineering 85 710-713.
Lin C.Y.; Lee, Y.C.; Hsiao, F. B.; Chuang, C.H., (2006), “Parametric Investigation of Laser-Assisted Direct Imprint (LADI) Technique,” Materials Science Forum, Vol.505-507, pp.307-312.
Liu Shih-Jung; Yau-Chia Chang, (2006), ”A novel soft-mold roller embossing method for the rapid fabrication of micro-blocks onto glass substrates”, J. Micromech. Microeng. 17, pp.172-179.
Lourtioz Jean-Michel, (2006),“Photonic Crystals Towards Nanoscale Photonic Devices”, Springer.
Micro Chem, http://www.microchem.com/products/su_eight.htm
Maier Stean Alexander, (2007), ”Plasomonics Fundamentals and Applications”, Springer+Business Media LLC.
Park Hyung Seok, (2007), "Novel Process to Improve Defect Problems for Thermal Nanoimprint Lithography", IEEE transactions on semiconductor manufacturing, Vol. 20, NO.1 pp.13-19.
Pendry J. B., (2000), ”Negative Refraction Makes a Perfect Lens”, Physical Review Letters, Vol.85, 18, pp.3966-3969.
Rockstuhl Carsten; Falk Lederer, (2007),“Negative-index metamaterials from nanoapertures”, Physical Review, B.76, 125426.
Schmid Gerard M.; Ecron Thompson; Nick Stacey; Douglas J. Resnick, (2007), "Template fabrication for the 32 nm node and beyond", Microelectronic Engineering, 84, pp.853–859.
Seo Soon-min, (2007), "Simple fabrication of nanostructure by continuous rigiflex imprinting", Microelectronic Engineering, 84, pp.567–572.
Shao D. B.; S. C. Chen, (2006),“Direct Patterning of Three-Dimensional Periodic Nanostructures by Surface-Plasmon- Assisted Nanolithography”, Nano Letters, Vol.6, No.10 pp.2279-2283.
Silberzan P.; Leger L.; Ausserre D.; Benattar J.J., (1991), “ Silanation of silica surfaces. A new method of constructing pure or mixed monolayers”, Langmuir 7, 1647-1651.
Srituravanich W.,” Deep subwavelength nanolithography using localized surface Plasmon modes on planar silver mask”, J. Vac. Sci. Technol., B.23(6), 0734-211X/2005/23)6)/2636.
Srituravanich Werayut, (2004), ”Plasmonic Nanolithography”, Nano Letters, Vol.4, No.6 pp.1085-1088.
Stockman Mark I., (2007), “Attosecond nanoplasmonic-field microscope”, nature photonics, Vol.1 pp.539-544.
Tan H.; A. Gilbertson; S.Y. Chou, (1998),“Roller nanoimprint lithography,” Journal of Vacuum Science and Technology, B., Vol.16, No.6, pp.3926-3928.
Wang Xudi, (2007), "High density patterns fabricated in SU-8 by UV curing nanoimprint", Microelectronic Engineering, 84, 872–876.
Xia Y., Whitesides G. M., Chem Angew., (1998), Int. Vol.37, pp.550-575.
Wu Shien-Yang, C.W. Chou, C.Y. Lin, M.C. Chiang, C.K. Yang, M.Y. Liu, L.C. Hu, C.H. Chang, P.H. Wu, C.I. Lin, H.F. Chen, S.Y. Chang, S.H. Wang, P.Y. Tong, Y.L. Hsieh, P.Y. Tong, J.J. Liaw, K.H. Pan, C.H. Hsieh, C.H. Chen, J.Y. Cheng, C.H. Yao, W.K. Wan, T.L. Lee, K.T. Huang, C.C Chen, K.C. Lin, L.Y. Yeh, K.C. Ku, S.C. Chen, C.W. Chang, H.J. Lin, S.M. Jang, Y.C. Lu, J.H. Shieh, M.H. Tsai, J.Y. Song, K.S. Chen, V. Chang, S.M. Cheng, S.H. Yang, C.H. Diaz, Y.C. See, M.S. Liang, (2007), “A 32nm CMOS Low Power SoC Platform Technology for Foundry Applications with Functional High Density SRAM”, 1-4244-0439- X/07/$25.00 c IEEE.
Xie Shen-Qi, Jing Wan, Bing-Rui Lu, Yan Sun, Yifang Chen, Xin-Ping Qu, Ran Liu, (2008), ”A nanoimprint lithography for fabricating SU-8 gratings for near-infrared to deep-UV application”, Microelectronic Engineering 85 914–917.
何侑倫, (2004), ”奈米轉印技術現況與未來”,微系統暨奈米科技協會會刊12期, pp.29-38.
吳志榮, (2006), "聚焦離子束加工玻璃次微米三維結構的探討", 中山大學碩士論文.
吳光鐘, (2005), ”奈米壓印微影設備技術─總計畫及子計畫一:奈米壓印之力學分析”,國立臺灣大學應用力學研究所.
宋震國, (2005), ”奈米 壓印技術應用於製作金屬次微米結構之研究─子計畫一:奈米壓印成形機制與製程設備研究(1/3)”,國立清華大學動力機械工程學系.
王長志, (2004), ”應用SU-8及犧牲層技術製作微流道系統製程研究”,第十二屆機械工程研討會.
謝東融, (2007),” 聚焦離子束製作次微米結構於壓印上的探討”, 中山大學碩士論文
李玉郎,”自組裝單分子膜(Self-Assembly Monolayer)在薄膜成長及光電元件的應用”,成功大學研究專題.
李孟科, (2006),”紅外線熱壓印微結構之研究與討論”,長庚大學碩士論文.
林建宏, (2006), ”超音波奈米轉印技術”, 國立清華大學博士論文.
院俊億, (2007), ”雷射輔助式奈米壓印技術應用於微米和奈米結構之參數探討”, 成功大學碩士論文.
許光城,(2005), ”微熱壓成形、微射出成形與奈米壓印成形之理論分析與實驗研究(I)”, 國立高雄應用科技大學機械工程系.
許淑雯, (2006), ”氣壓輔助滾輪紫外光轉印製程之開發與應用”, 臺灣大學碩士論文.
陳俊祥, (2006), ”滾輪式雷射金屬轉印技術與三維微奈米結構之直接壓印”, 成功大學碩士論文.
陳建銘, (2005), ”利用微奈米壓印技術製作可撓曲有機發光顯示器”, 國立高雄應用科技大學碩士論文.
陳釧鋒, (2004), ”奈米轉印製程與設備發展現況介紹”, 機械工業雜誌255期,pp.151-162.
游舜名, (2004), ”自組裝單分子膜輔助SU8-2035負型光阻與玻璃基材間粘著力提升的設計與測試”,清華大學碩士論文.
楊舜傑, (2008), “聚焦離子束於石英玻璃奈米結構加工之探討”, 中山大學碩士論文.
楊寶翔, (2005), ”以奈米壓痕法探討不同溫度下之光阻薄膜的機械性質”, 聖約翰技術學院碩士論文.
鄭芳松, (2007), ”氣囊式凹曲面壓印成形技術探討及其應用”,中國機械工程學會第二十四屆全國學術研討會論文集,E02-0039.
盧慶儒, 以細微製程見長的奈米壓印技術已趨近實用化, DIGITIMES, http://tech.digitimes.com.tw/ShowNews.aspx?zCatId=145&zNotesDocId=0000049329_B5H88Q4LZ21KLTALU1UHS.
維基百科, http://zh.wikipedia.org/w/index.php?title=%E7%8E%BB%E7%92%83&variant=zh-tw.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code