Responsive image
博碩士論文 etd-0815108-154514 詳細資訊
Title page for etd-0815108-154514
論文名稱
Title
以氧化鋅壓電薄膜製作薄膜體聲波濾波器
The Fabrication of Thin Film Bulk Acoustic Wave Filters Using ZnO Piezoelectric Thin Films
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
90
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-07-24
繳交日期
Date of Submission
2008-08-15
關鍵字
Keywords
薄膜體聲波濾波器、氧化鋅
Thin film bulk acoustic wave filters, ZnO
統計
Statistics
本論文已被瀏覽 5698 次,被下載 0
The thesis/dissertation has been browsed 5698 times, has been downloaded 0 times.
中文摘要
體聲波元件具有低損耗、較小的頻率溫度係數、較高的功率承受能力的特點,在高頻通訊系統上為一個相當重要的元件。
本論文採用階梯式與堆疊式晶體濾波器作為體聲波濾波器的主要結構;在室溫下,以壓力3 mTorr,功率175 W沉積白金電極,且以鈦為晶種層,增加白金與SiNx/SiO2/Si基板間的附著力,再利用室溫兩階段法沉積氧化鋅壓電薄膜。
於階梯式濾波器中,當濾波器共振面積由160×150縮小至130×60 μm2,頻帶抑制由5.56增加至6.63 dB,達到較佳的濾波效果;而隨著接地端與訊號端的距離由45增加至90 μm,接地端無法有效保護訊號傳遞,導致濾波器的插入損失從-5.01增加至-11 dB。
堆疊式晶體濾波器呈現多模態的共振現象,以第二諧振為主的共振點具有較高的頻帶抑制值33.6 dB,但頻寬僅6.9 MHz,因此較適合於窄頻濾波器的應用。
Abstract
Thin Film bulk acoustic wave devices have the advantages of low loss, low temperature coefficient of the resonant frequency, and high power handling. These excellent characteristics are suitable for the applications on high frequency communication systems.
In this study, thin film bulk acoustic wave filters using the ladder-type filter and stacked crystal filter configurations were investigated. Platinum was chosen as the top and bottom electrodes. To improve the platinum adhesion on SiNx/SiO2/Si substrates, a seeding layer of titanium is used. Highly c-axis oriented piezoelectric zinc oxide thin films were deposited by two-step deposition method under room temperature.
As resonant area decreases, the band rejection of ladder-type filter will increase. Because the resonant area decreased, the distance between signal and ground will increase the results in an increased insertion loss. On the other hand, stacked crystal filters have larger band rejection and less 3dB bandwidth, which are suitable for the application of narrow band filters.
目次 Table of Contents
目錄 III
圖表目錄 VI
第一章 前言 1
1.1 研究背景 1
1.2 薄膜體聲波濾波器簡介 2
1.3 研究內容 5
第二章 理論分析 7
2.1 壓電模數(Piezoelectric moduli) 7
2.2 壓電理論 9
2.2.1 壓電效應 10
2.2.2 壓電方程式 11
2.2.3 壓電材料 13
2.3 氧化鋅結構與特性 14
2.4 Mason model等效電路分析 15
2.5 薄膜體聲波共振器 17
2.5.1 值 18
2.5.2 Q值 18
2.6 薄膜體聲波濾波器 19
2.6.1 階梯式濾波器 19
2.6.2 堆疊式晶體濾波器 20
第三章 實驗步驟 22
3.1 直流濺鍍系統與薄膜沉積 22
3.2 射頻濺鍍系統與薄膜沉積 22
3.3 薄膜特性分析 23
3.3.1 X光繞射(X-Ray Diffraction, XRD)分析 23
3.3.2 掃描式電子顯微鏡(Scanning Electron Microscopy, SEM)分析 23
3.3.3 原子力測量顯微鏡(Atomic Force Microscopy, AFM)分析 24
3.4 頻率調變 24
3.5 濾波器製作流程 25
3.5.1 RCA清洗基板 25
3.5.2 SiO2薄膜沉積 26
3.5.3 SiNx薄膜沉積 26
3.5.4 背部蝕刻窗口與底電極的製作 27
3.5.5 壓電層的製作 27
3.5.6 頂電極的製作 27
3.5.7 KOH蝕刻背部空腔 28
3.6元件量測 28
第四章 結果與討論 29
4.1 薄膜材料之物性分析 29
4.1.1 電極 29
4.1.2 壓電層 29
4.2 階梯式濾波器 30
4.2.1 頻帶抑制(Band rejection) 30
4.2.2 插入損失(Insertion loss) 31
4.2.3 3dB頻寬(3dB Bandwidth) 31
4.3 堆疊式晶體濾波器 32
4.3.1 寬頻分析 32
4.3.2 窄頻分析 33
第五章 結論 34
參考文獻 35

圖1-1 體聲波共振器的結構 42
圖1-2 體聲波濾波器的組態:(a)階梯式濾波器, (b)平衡式濾波器, (c)堆疊式晶體濾波器, (d)耦合共振濾波器 44

圖2-1 單位晶胞應力示意圖 45
圖2-2 壓電效應:(a)正壓電效應,(b)逆壓電效應 46
圖2-3 氧化鋅(ZnO)結構 47
圖2-4 體聲波共振器之幾何結構 48
圖2-5 Mason model等效電路模型 48
圖2-6 不同頂電極之模擬圖 49
圖2-7 聲波在高聲波能量反射介面的聲波反射示意圖 49
圖2-8 體聲波共振器之阻抗特性 50
圖2-9 2.5-stage階梯式濾波器 51
圖2-10 1-stage階梯式濾波器電路示意圖 51
圖2-11 階梯式濾波器阻抗與濾波器特性示意圖 52
圖2-12 堆疊式晶體濾波器結構圖 53
圖2-13 堆疊式晶體濾波器之特性 53

圖3-1 直流及射頻磁控濺鍍系統 54
圖3-2 階梯式濾波器之製程流程圖 55
圖3-3 堆疊式晶體濾波器之製程流程圖 56
圖3-4 舉離法 57
圖3-5 白金厚度與頻率漂移關係圖 58
圖3-6 元件完成圖: (a)階梯式濾波器, (b)堆疊式晶體濾波器 59

圖4-1 白金電極之XRD分析圖 59
圖4-2 白金電極之SEM分析圖 59
圖4-3 白金電極之AFM分析圖 60
圖4-4 氧化鋅之XRD分析圖 60
圖4-5 氧化鋅之SEM分析圖: (a)上視圖, (b)剖面圖61
圖4-6 氧化鋅之AFM分析圖 62
圖4-7 四種不同電極圖案 64
圖4-8 S21與頻率關係圖:(a)電極圖形一, (b)電極圖形二, (c)電極圖形三, (d)電極圖形四 66
圖4-9 共振面積與頻帶抑制之關係圖 67
圖4-10 不同共振面積與共振器阻抗關係圖 67
圖4-11 電極間距與插入損失之關係圖 68
圖4-12 四種電極圖形與頻寬之關係圖 68
圖4-13 堆疊式晶體濾波器之頂電極圖案 69
圖4-14 堆疊式晶體濾波器S21與頻率之寬頻關係圖69
圖4-15 堆疊式晶體濾波器S21與頻率之窄頻關係圖70

表一 陶瓷濾波器、表面聲波濾波器、體聲波濾波器比較72
表二 張量表示法與矩陣表示法 73
表三 正逆壓電效應的表示式 73
表四 氧化鋅與氮化鋁特性 74
表五 氧化鋅(ZnO)基本特性表 75
表六 各層薄膜的參數 76
表七 白金為頂電極之共振器模擬參數表77
表八 直流磁控濺鍍法沉積金屬之系統參數80
表九 室溫兩階段沈積氧化鋅之系統參數 78
表十 氧化鋅(ZnO)的JCPDS Data 79
表十一 不同電極圖形與濾波器特性 80
表十二 電極變化之模擬參數 80
參考文獻 References
[1] B. P. Otis, M. J. Rabaey, “A 300um 1.9GHz COMS oscillator utilizing micromachined resonators”, IEEE Journal of solid-state circuits, vol.38, No.7, pp.1271-1274, July 2003.
[2] P. Bradley, R. Ruby, J. D. Larson III, Y. Oshmyansky, D. Figueredo, “A Film Bulk Acoustic Resonator Duplexer for USPCS Handset Applications”, IEEE MTT-S Digest, pp.367-370, 2001.
[3] K. W. Tay, “Performance Characterization of thin AlN films deposited on Mo Electrode for Thin-Film Bulk Acoustic-Wave Resonators”, Japanese Journal of Applied Physics, vol. 43, No.8A, pp.5510-5515, 2004.
[4] R. C. Ruby, P. Bradley, Y. Oshmyansky, “Thin film bulk acoustic resonators for wireless applications”, IEEE Ultrason. Symp, pp.813-821, 2001.
[5] D. H. Kim, M. Yim, D. Chai, G. Yoon, “Improvements of resonance characteristics due to thermal annealing of Bragg reflectors in ZnO-based FBAR devices”, Electronics Letters, vol.39, No.13, pp.962-964, June 2003.
[6] J. Larson, “Power Handling and Temperature Coefficient Studies in FBAR Duplexers for the 1900MHz PCS Band”, IEEE Ultrasonics Symposium, pp.869-874, 2000.
[7] M. Hara, J. Kuypers, M. Esashi, “Surface micromachined AlN thin film 2GHz resonator for CMOS integration”, Sensors and Actuators, A117, pp.211-216, 2005.
[8] R. Aigner, J. Ella, H. -J. Timme, L. Elbrecht, W. Nessler, S.Marksteiner, “Advancement of MEMS into RF-Filter Applications”, IEEE IEDM, pp.897-900, 2000.
[9] R. B. Stokes and J. D. Crawfold. “X-Band Thin-Film Acoustic Filter on GaAs”, IEEE Tans. Microwave Theory Tech., vol. 41, pp. 1075-1080, July 1993.
[10] V. Krishnaswamy, J. F. Rosenbaum, S. S. Horwitz, and R. A. Moore: “Film Bulk Acoustic Wave Resonator and Filter Technology”, IEEE Trans. MTT-S Dig., pp.153-155, 1992.
[11] M. Schmid, E. Benes, W. Burger, and V. Kravchenko: “Motional Capacitance of :ayered Piezoelectric Thickness-mode Resonators”, IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 38, pp.199-206, May 1991.
[12] J. B. Lee, J. P. Jung, M. H. Lee, J. S. Park: “Effects of bottom electrodes on the orientation of AlN films and the frequency responses of resonators in AlN-based FBARs”, Thin Solid Films, vol. 447–448, pp.610-614, 2004.
[13] D. H. Kim, M. Yim, D. Chai, J. S. Park and G. Yoon: “Improved Resonance Characteristics by Thermal Annealing of W/SiO2 Multi-Layers in Film Bulk Acoustic Wave Resonator Devices”, Japanese Journal of Applied Physics Vol. 43, No. 4A, pp. 1545–1550, 2004.
[14] R. C. Lin, K. S. Kao, and Y. C. Chen “Two-step sputtered ZnO piezoelectric films for film bulk acoustic resonators”, Appl. Phys. A, 89, 475, 2007.
[15] K. H. Yoon and J. Y. Cho, “Photoluminescence characteristics of zinc oxide thin films prepared by spray pyrolysis technique”, Mater. Res. Bull., vol. 35, pp. 39-46, 2000.
[16] Z. Fu, B. Lin and J. Zu, “Photoluminescence and structure of ZnO films deposited on Si substrates by metal-organic chemical vapor deposition”, Thin Solid Films, vol. 402, pp. 302-306, 2002.
[17] J. Ye, S. Gu, S. Zhu, T. Chen, L. Hu, F. Qin, R. Zhang, Y. Shi and Y. Zheng, “The growth and annealing of single crystalline ZnO films by low-pressure MOCVD”, J. Crystal Growth, vol. 243, pp. 151-156, 2002.
[18] Y. Nakanishi, A. Miyake, H. Kominami, T. Aoki, Y. Hatanaka and G. Shimaoka, “Preparation of ZnO thin films for high-resolution field emission display by electron beam evaporation”, Appl. Surf. Sci., vol. 142, pp. 233-236, 1999.
[19] X. H. Li, A. P. Huang, M. K. Zhu, Sh. L. Xu, J. Chen, H. Wang, B. Wang, B. Wang and H. Yan, “Influence of substrate temperature on the orientation and optical properties of sputtered ZnO films”, Mater. Lett., vol. 75, pp. 4655-4659, 2003.
[20] W. Water and S. Y. Chu, “Physical and structural properties of ZnO sputtered films”, Mater. Lett., vol. 55, pp. 67-72, 2002.
[21] S. H. Bae, S. Y. Lee, H. Y. Kim and S. Im, “Effects of post-annealing treatment on the light emission properties of ZnO thin films on Si”, Opt. Mater., vol. 17, pp. 327-330, 2001.
[22] Y. G. Wang, S. P. Lau, X. H. Zhang, H. W. Lee, S. F. Yu, B. K. Tay and H. H. Hng, “Evolution of visible luminescence in ZnO by thermal oxidation of zinc films”, Chem. Phys. Lett., vol. 375, pp. 113-118, 2003.
[23] K. Sakurai, M. Kanehiro, K. Nakahara, T. Tanabe and S. Fujita, “Effects of oxygen plasma condition on MBE growth of ZnO”, J. Crystal Growth, vol. 209, pp. 522-525, 2000.
[24] D. G. Baik and S. M. Cho, “Application of sol-gel films for ZnO/n-Si junction solar cells”, Thin Solid films, vol. 354, pp. 227-231, 1999.
[25] J. B. Lee, J. P. Jung, M. H. Lee, J. S. Park, “Effects of bottom electrodes on the orientation of AlN films and the frequency responses of resonators in AlN based FBARs”, Thin Solid Films, pp. 610-614, 2004.
[26] M. Akiyama, K. Nagao, N. Ueno, H. Tateyama, “Influence of metal electrodes on crystal orientation of aluminum nitride thin films”, Journal of Vacuum Science and Technology, vol. 74, pp. 699-703, 2004.
[27] H. C. Lee, J. Y. Park, K. H. Lee, and J. U. Bu, “Preparation of highly textured Mo and AlN films using a Ti seed layer for integrated high-Q film bulk acoustic resonators”, Journal of Vacuum Science and Technology, pp.1127-1133, 2004.
[28] R. C. Lin, K. S. Kao, C. C. Cheng, and Y. C. Chen, “Deposition and structural properties of R.F. magnetron sputtered ZnO thin films on Pt/Ti/SiNx/Si substrate for FBAR device”, Thin Solid Film, 516(16), 5262 (2008).
[29] 吳朗,“電子陶瓷:壓電陶瓷”,全欣資訊,(1994)7.
[30] Q. X. Su, P. Kirby, E. Komuro, M. Imura, Q. Zhang, R. Whatmore, “Thin Film Bulk Acoustic Resonators and Filters Using ZnO and Lead Zirconium Titanate Thin Films”, IEEE Transactions on microwave theory and techniques, vol.49, No.4, pp.769-778, April 2001.
[31] 水瑞鐏,“氧化鋅薄膜特性及其在通訊元件與液體感測器上之應用”,國立成功大學電機工程學系博士論文,(2002)。
[32] P. Nunes, D. Costa, E. Fortunato and R. Martins, “Performances presented by zinc oxide thin films deposited by r.f. magnetron sputtering”, Vacuum, vol. 64, pp. 293-297, 2002.
[33] S. Tuzemen, G. Xiong, J. Wilkinson, B. Mischuck, K. B. Ucer and R. T. Williams, “Production and properties of p-n junctions in reactively sputtered ZnO”, Physical B, vol. 308-310, pp. 1197-1200, 2001.
[34] Y. Igasaki and H. Saito, “The effects of Zinc diffusion the electrical and optical properties of ZnO:Al films prepared by RF reactive sputtering”, Thin Solid Films, vol. 199, pp. 223-230, 1991.
[35] M.T. Young and S.D. Keun, “Effects of rapid thermal annealing on the morphology and electrical properties of ZnO/In Films”, Thin Solid Films, vol. 410, pp. 8-13, 2002.
[36] 林宗賢,”微小型體聲波元件之設計與製造”,國立清華大學動力機械工程研究所博士論文,(2006)。
[37] K. M. Lakin, G. R. Kline, R. S. Ketcham, J. R. Martin, K. T. McCarron, “Stacked Crystal Filters Implemented with Thin Films”, IEEE, pp 536-543, 1989.
[38] R. C. Lin, Y. C. Chen, C. C. Cheng, K. S. Kao, “Highly-Sensitive Mass Sensor using Film Bulk Acoustic Resonator”, Sensors and Actuators, Available online (2008).
[39] 蕭宏著,羅正忠,張鼎張譯,“半導體製程技術導論”,學銘圖書有限公司,(2006)9.
[40] I. Zubel, M. Kramkowska, “The effect of alcohol additives on etching characteristics in KOH solutions”, Sensors and Actuators A 115, pp. 549-556, 2004.
[41] 劉吉卿,”以兩階段濺鍍法沉積氧化鋅壓電薄膜於薄膜體聲波共振器之研究”,國立中山大學電機工程研究所碩士論文,(2006)。
[42] 沈書緯,”體聲波壓電薄膜共振器之研製與分析”,國立台灣大學應用力學工程研究所碩士論文,(2003)。
[43] Q. X. Su, P. B. Kirby, E. Komuro, R. W. Whatmore, “Edge Supported ZnO Thin Film Bulk Acoustic Wave Resonators and Filter Design”, IEEE/EIA International Frequency Control Symposium and Exhibition, pp 434-440, 2000.
[44] K. W. Kim, J. G. Yook, M. G. Gu, W. Y. Song, Y. J. Yoon, H. K. Park, “TFBAR Filters for 2 GHz Wireless Applications”, IEEE MTTS Digest, pp 1181-1184, 2002.
[45] V. S. Kulkarni, B. P. Barber, K. Prasad, “Control of Electromechanical Coupling in Stacked Crystal Filters”, Systems, Applications and Technology Conference, pp. 1-7, 2006.
[46] K. M. Lakin, J. Belsick, J. F. McDonald, and K.T. McCarron, “High performance stacked crystal filters for GPS”, Ultrasonics Symposium, vol. 1, pp.833-838, 2001.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.119.104.160
論文開放下載的時間是 校外不公開

Your IP address is 18.119.104.160
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code