Responsive image
博碩士論文 etd-0815111-184823 詳細資訊
Title page for etd-0815111-184823
論文名稱
Title
剪模態氮化鋁薄膜體聲波共振器之液態感測器研製
The Liquid Sensor Using Shear-Mode Thin Film Bulk Acoustic Resonator with AlN Films
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
117
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-07-15
繳交日期
Date of Submission
2011-08-15
關鍵字
Keywords
氮化鋁薄膜、c軸傾斜、剪模態、薄膜體聲波共振器、感測器
FBAR, sensor, shear-mode, AlN thin films, tilted c-axis
統計
Statistics
本論文已被瀏覽 5668 次,被下載 508
The thesis/dissertation has been browsed 5668 times, has been downloaded 508 times.
中文摘要
本論文之研究目的為以c軸傾斜之氮化鋁薄膜製作出剪模態薄膜體聲波共振器(FBAR),並應用於液態環境之感測。為了研製剪模態薄膜體聲波共振器,本研究以射頻磁控濺鍍法結合離軸成長方式以沉積氮化鋁薄膜,並針對離軸距離及沉積參數之影響進行一系列的探討。薄膜體聲波共振器具有剪模態之原因,是由於氮化鋁薄膜是以c軸傾斜的方式成長。於本研究中,藉由沉積參數的調變,可成長出具有傾斜角15°及23°之氮化鋁薄膜。本研究利用X光繞射儀與掃描式電子顯微鏡對氮化鋁薄膜進行物性分析,以網路分析儀HP8720搭配CASCADE探針座進行FBAR元件頻率響應的量測。藉由頻率響應分析得知,傾斜角度23°氮化鋁薄膜所製作之FBAR具有兩種共振模態,其縱波之共振頻率為2.07 GHz,剪波之共振頻率為1.17 GHz。為了探討FBAR元件之感測特性,本研究進行了質量負載與液態負載實驗。經由實驗數據的計算,得知縱波與剪波之質量感測度分別為2295 Hz cm2/ng與1363 Hz cm2/ng;而縱波與剪波之品質因子分別為588與337。於液態負載時,FBAR元件的縱模態之品質因子從588降低至0;而剪模態之品質因子則保持不變。經由計算得知,縱波之液態感測度為0;剪波之液態感測度為17.88 Hz cm2/μg。
Abstract
Shear-mode thin film bulk acoustic resonator (TFBAR) devices with c-axis tilted AlN films are fabricated for the application of liquid sensors. To fabricate shear-mode TFBAR devices, the off-axis RF magnetron sputtering method for the growth of piezoelectric AlN thin films is adopted and influences of the relative distance and the sputtering parameters are investigated. The shrar-mode phenomenon of a TFBAR results from the tilted crystalline orientation of AlN thin films. In this thesis, the AlN thin films are deposited with tilting angles of 15° and 23°, set by controlling the deposition parameters. The properties of the AlN thin films are investigated by X-ray diffraction and scanning electron microscopy. The frequency response is measured using an HP8720 network analyzer and a CASCADE probe station. The frequency response of the TFBAR device with 23° tilted AlN thin film is measured to reveal its ability to provide shear-mode resonance. The resonance frequencies of the longitudinal and shear modes are 2.07 GHz and 1.17 GHz, respectively. To investigate the sensing characteristics of TFBAR, two basic experiments of mass and liquid loading are carried out. The sensitivities of the longitudinal and shear modes to mass loading are calculated to be 2295 Hz cm2/ng and 1363 Hz cm2/ng with the mechanical quality factors of 588 and 337, respectively. However, the mechanical quality factors of the longitudinal mode of TFBAR without and with a liquid loading decreased from 588 to 0, whereas those remain almost the same for the shear mode under liquid loading. The sensitivities of the longitudinal and shear modes are calculated to be 0 and 17.88 Hz cm2/μg for liquid loading.
目次 Table of Contents
目錄
摘要 i
目錄 iii
圖表目錄 vii
第一章 前言 1
1.1. 簡介 1
1.2. 薄膜體聲波共振器 1
1.3. 研究內容 4
第二章 理論分析 7
2.1. 氮化鋁(Aluminum nitride , AlN)結構與特性 7
2.2. 壓電理論 10
2.3. 反應式磁控濺鍍 12
2.3.1. 輝光放電 12
2.3.2. 磁控濺射 13
2.3.3. 射頻濺射 15
2.3.4. 反應式濺射 15
2.4. 薄膜沉積機制 16
2.5. 薄膜分析 18
2.5.1. X-ray繞射分析 18
2.5.2. 掃描式電子顯微鏡分析 19
2.5.3. 原子力顯微鏡分析 19
2.6. 矽蝕刻製程 20
2.6.1. 非等向性濕式蝕刻 20
2.6.2. 乾式蝕刻 22
2.7. FBAR結構與原理 24
2.8. 體聲波傳遞模式 24
2.9. 傾斜式氮化鋁薄膜之研究 25
2.10. FBAR參數性質 26
2.10.1. 機電耦合係數kt2 26
2.10.2. 品質因子(Quality factor, Q) 26
2.11. Mason 等效電路模型 27
2.12. 質量感測度 29
2.13. 電漿修飾 30
2.13.1. 電漿活化 31
2.13.2. 電漿聚合 31
2.13.3. 電漿誘導接枝共聚合 32
2.14. 接觸角 32
2.15. 自我組裝單分子膜技術(SAMs) 33
2.15.1. 成膜系統 34
2.15.2. 基本結構 34
2.16. 酵素連結免疫吸附法(ELISA) 35
2.16.1. 直接型酵素連結免疫吸附法(Direct ELISA) 36
2.16.2. 間接型酵素連結免疫吸附法(Indirect ELISA) 36
2.16.3. 三明治型酵素連結免疫吸附法(Sandwich ELISA) 36
第三章 實驗 38
3.1. 實驗流程 38
3.2. 基板清洗 40
3.3. 直流濺鍍系統與薄膜沉積 41
3.4. 射頻濺鍍系統 42
3.5. 黃光製程 46
3.6. 蝕刻製程 46
3.7. 薄膜特性分析 47
3.7.1. X光繞射(X-Ray Diffraction, XRD)分析 47
3.7.2. 掃描式電子顯微鏡(SEM) 49
3.7.3. 原子力顯微鏡(AFM) 50
3.8. FBAR之製作 51
3.8.1. SiNx薄膜沉積 51
3.8.2. 背部蝕刻窗口及底電極之製作 52
3.8.3. 壓電層之製作 54
3.8.4. 頂電極之製作 54
3.8.5. KOH蝕刻背部空腔 55
3.9. 元件之設定參數 55
3.10. 元件電性量測 55
3.11. 質量感測 55
3.11.1. 鈦(Ti)薄膜之沉積率 56
3.11.2. 元件頻率響應 56
3.12. 液態感測 56
3.12.1. 生醫附著層 56
3.12.2. 氧電漿清洗與接觸角量測 57
3.12.3. 元件頻率響應 58
3.13. 生醫感測 58
3.13.1. 自我組裝單分子膜技術(SAMs) 59
3.13.2. 實驗藥品 60
3.13.3. 酵素連結免疫吸附法(ELISA)呈色分析 64
3.13.4. FBAR生醫感測器 65
第四章 結果與討論 66
4.1. 氮化鋁壓電層之探討 66
4.1.1. 離軸距離 68
4.1.2. 濺鍍壓力 70
4.1.3. FBAR之頻率響應 73
4.2. 質量感測 79
4.2.1. 金屬膜Ti之沉積率 79
4.2.2. 縱波感測度 81
4.2.3. 剪波感測度 82
4.3. 液態感測 84
4.3.1. Au/Cr生醫附著層 84
4.3.2. 接觸角量測 85
4.3.3. 頻率響應 86
4.4. 生醫感測 88
4.4.1. ELISA呈色分析 88
4.4.2. 頻率響應 89
第五章 結論 93
參考文獻 94

參考文獻 References
參考文獻
[1]Wei,C.L.,Chen,Y.C.,Kao,K.S.,Wu,K.T.,Cheng,D.L.&Hsieh, P.T. “Characterization of ZnO films of surface acoustic-wave oscillators for ultraviolet sensing applications.” SPIE, (2010).
[2]Lin, R. C., Chen, Y. C., Chang, W. T., Cheng, C. C. & Kao, K. S. “Highly sensitive mass sensor using film bulk acoustic resonator.” Sensors and Actuators A: Physical 147, 425-429, (2008).
[3]Huang, I. Y. & Lee, M. C. “Development of a FPW allergy biosensor for human IgE detection by MEMS and cystamine-based SAM technologies.” Sensors Actuators B: Chem. 132, 340-348 (2008).
[4]Ruby, R. C., Bradley, P., Oshmyansky, Y., Chien, A. & Larson III, J. D. “Thin film bulk wave acoustic resonators (FBAR) for wireless applications.” (Ultrasonics Symposium, 2001 IEEE Ser. 1, IEEE, 2001).
[5]Larson III, J.D., Ruby III, J.D., Bradley, R.C., Wen, J., Kok, S.L.& Chien, A. “Power handling and temperature coefficient studies in FBAR duplexers for the 1900 MHz PCS band.” (Ultrasonics Symposium, 2000 IEEE Ser. 1, IEEE, 2000).
[6]Lakin, K., McCarron, K., Belsick, J. & Rose, R. “Filter banks implemented with integrated thin film resonators.” (Ultrasonics Symposium, 2000 IEEE Ser. 1, IEEE, 2000).
[7]Chung, C. J., Chen, Y. C., Cheng, C. C. & Kao, K. S. “Synthesis and bulk acoustic wave properties on the dual mode frequency shift of solidly mounted resonators.” Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on 55, 857-864 (2008).
[8]Kim, D. H., Yim, M., Chai, D., Park , J. S. & Yoon, G. “Improved resonance characteristics by thermal annealing of W/SiO2 multi-layers in film bulk acoustic wave resonator devices.” Japanese journal of applied physics 43, 1545-1550 (2004).
[9]Lee, S. H., Kim, J. H., Mansfeld, G., Yoon, K. & Lee, J. K. “Influence of electrodes and Bragg reflector on the quality of thin film bulk acoustic wave resonators.” (Frequency Control Symposium and PDA Exhibition, 2002. IEEE International, IEEE, 2002).
[10]Mattila, T., Oja, A., Seppa, H., Jaakkola, O., Kiihamaki, J., Kattelus, H., Koskenvuori, M., Rantakari, P.& Tittonen, I. “Micromechanical bulk acoustic wave resonator.” (Ultrasonics Symposium, 2002. Proceedings. 2002 IEEE Ser. 1, IEEE, 2002).
[11]Kim, H.H., Ju, B.K., Lee, Y.H., Lee, S.H., Lee, J.K.& Kim, S.W. “A noble suspended type thin film resonator (STFR) using the SOI technology.” Sensors and Actuators A: Physical 89, 255-258 (2001).
[12]Kirby, P. B., Potter, M. D. G., Williams, C. P. & Lim, M. Y. “Thin film piezoelectric property considerations for surface acoustic wave and thin film bulk acoustic resonators.” Journal of the European Ceramic Society 23, 2689-2692 (2003).
[13]Huang, C. L., Tay, K. W. & Wu, L. “Fabrication and performance analysis of film bulk acoustic wave resonators.” Mater Lett 59, 1012-1016 (2005).
[14]Tay, K. W., Huang, C. L. & Long, W. “Influence of piezoelectric film and electrode materials on film bulk acoustic-wave resonator characteristics.” Japanese journal of applied physics 43, 1122-1126 (2004).
[15]Nishihara, T., Yokoyama, T., Miyashita, T. & Satoh, Y. “High performance and miniature thin film bulk acoustic wave filters for 5 GHz.” (Ultrasonics Symposium, 2002. Proceedings. 2002 IEEE Ser. 1, IEEE, 2002).
[16]Kirby, P.B., Su, Q.X., Komuro, E., Zhang, Q., Imura, M.& Whatmore, R.W. “PZT thin film bulk acoustic wave resonators and filters.” (Frequency Control Symposium and PDA Exhibition, 2001. Proceedings of the 2001 IEEE International, IEEE, 2001).
[17]Lin, R. C., Chen, Y. C. & Kao, K. S. “Two-step sputtered ZnO piezoelectric films for film bulk acoustic resonators.” Appl. Phys. A 89, 475-479 (2007).
[18]Lin, R. C., Kao, K. S., Cheng, C. C. & Chen, Y. C. “Deposition and structural properties of RF magnetron-sputtered ZnO thin films on Pt/Ti/SiNx/Si substrate for FBAR device.” Thin Solid Films 516, 5262-5265 (2008).
[19]Chung, C. J., Chen, Y. C., Cheng, C. C. & Kao, K. S. “An improvement of tilted AlN for shear and longitudinal acoustic wave.” Appl. Phys. A 94, 307-313 (2009).
[20]Wei, C.L., Chen, Y.C., Li, S.R., Cheng, C.C., Kao, K.S. Chung, C.J. “Effects of reflecting layers on resonance characteristics of a solidly mounted resonator with ¼ λ mode configuration.” Appl. Phys. A 99, 271-278 (2010).
[21]European Union, Waste Electrical and Electronic Equipment [WEEE] Regulations, (”EU-Directive 96/EC,” 2002)
[22]European Union, Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment [ROHS] Regulations, (”EU-Directive 95/EC,” 2002)
[23]Nakakuki, M., Shiono, A., Kobayashi, I., Tajima, N., Yamakami, T., Hayashibe, R., Abe, K., Kamimura, K., Obata, M.& Miyamoto, M. “Characterization of Al-based insulating films fabricated by physical vapor deposition.” Japanese Journal of Applied Physics-Part 1 Regular Papers and Short Notes 47, 609-611 (2008).
[24]Ohta, J., Fujioka, H., Sumiya, M., Koinuma, H. & Oshima, M. “Epitaxial growth of AlN on (La, Sr)(Al, Ta) O3 substrate by laser MBE.” J. Cryst. Growth 225, 73-78 (2001).
[25]Strite, S. & Morkoc, H. “GaN, AlN, and InN: a review.” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 10, 1237-1266 (1992).
[26]Butcher, K. S. A. & Tansley, T. L. “Ultrahigh resistivity aluminum nitride grown on mercury cadmium telluride.” J. Appl. Phys. 90, 6217 (2001).
[27]Hara, M., Kuypers, J., Abe, T. & Esashi, M. “Surface micromachined AlN thin film 2 GHz resonator for CMOS integration.” Sensors and Actuators A: Physical 117, 211-216 (2005).
[28]Soh, J. W., Lee, W. J., Park, J. H. & Lee, S. W. “SAW characteristics of AlN films deposited on various substrates using ECR plasma enhanced CVD and reactive RF sputtering.” (Ultrasonics Symposium, 1996. Proceedings., 1996 IEEE Ser. 1, IEEE, 1996).
[29]Yang, C.M., Uehara, K., Kim, S.K., Kameda, S., Nakase, H.& Tsubouchi, K. “Highly c-axis-oriented AlN film using MOCVD for 5GHz-band FBAR filter.” (Ultrasonics, 2003 IEEE Symposium on Ser. 1, IEEE, 2003).
[30]Mastro, M. A. & Eddy, C. R. “MOCVD growth of thick AlN and AlGaN superlattice structures on Si substrates.” J. Cryst. Growth 287, 610-614 (2006).
[31]Schenk, H.P.D., Kaiser, U., Kipshidze, G.D., Fissel, A., Kräußlich, J., Hobert, H., Schulze, J.& Richter, W. “Growth of atomically smooth AlN films with a 5: 4 coincidence interface on Si (111) by MBE.” Materials Science and Engineering B 59, 84-87 (1999).
[32]Mansurov, V.G., Nikitin, A.Y., Galitsyn, Y.G., Svitasheva, S.N., Zhuravlev, K.S., Osvath, Z., Dobos, L., Horvath, Z.E.& Pecz, B. “AlN growth on sapphire substrate by ammonia MBE.” J. Cryst. Growth 300, 145-150 (2007).
[33]Assouar, M. B., Elmazria, O., Le Brizoual, L. & Alnot, P. “Reactive DC magnetron sputtering of aluminum nitride films for surface acoustic wave devices.” Diamond and related materials 11, 413-417 (2002).
[34]Kao, K. S. & Cheng, C. C. “Synthesis of C-axis-oriented aluminum nitride films by reactive RF magnetron sputtering for surface acoustic wave.” Jpn.J.Appl.Phys 40, 4969-4973 (2001).
[35]Liu, W. J., Wu, S. J., Chen, C. M., Lai, Y. C. & Chuang, C. H. “Microstructural evolution and formation of highly c-axis-oriented aluminum nitride films by reactively magnetron sputtering deposition.” J. Cryst. Growth 276, 525-533 (2005).
[36]Lee, J. B., Jung, J. P., Lee, M. H. & Park, J. S. “Effects of bottom electrodes on the orientation of AlN films and the frequency responses of resonators in AlN-based FBARs.” Thin Solid Films 447, 610-614 (2004).
[37]Akiyama, M., Nagao, K., Ueno, N., Tateyama, H. & Yamada, T. “Influence of metal electrodes on crystal orientation of aluminum nitride thin films.” Vacuum 74, 699-703 (2004).
[38]Chiu, K. H., Chen, H. R. & Huang, S. R. S. “High-performance film bulk acoustic wave pressure and temperature sensors.” Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers 46, 1392-1397 (2007).
[39]Zhang, H. & Kim, E. S. “Micromachined acoustic resonant mass sensor. Microelectromechanical Systems.” Journal of 14, 699-706 (2005).
[40]吳朗, 電子陶瓷-壓電陶瓷", 全欣資訊圖書,pp.7 (1994).
[41]顏豐明,“高熱傳導率氮化鋁基板材料之簡介”,材料與社會,73(1993)45-46.
[42]施敏 & 張俊彥, 半導體元件之物理與技術, 儒林, pp. 425 (1990).
[43]Berry, R. W., Hall, P. M. & Harris, M. T. “Thin film technology.” D.VAN NOSTRAND CO., INC., PRINCETON, N.J.1968, 706 P (1968).
[44]Kern, W. & Vossen, J. in Thin film processes (Academic Press, 1991).
[45]Janczak-Bienk, E., Jensen, H. & Sorensen, G. “The influence of the reactive gas flow on the properties of AIN sputter-deposited films.” Materials Science and Engineering: A 140, 696-701 (1991).
[46]吳泰伯 & 許樹恩. X 光繞射原理與材料結構分析,中國材料科學學會,pp.108 (1996).
[47]Bean, K. E. “Anisotropic etching of silicon.” Electron Devices, IEEE Transactions on 25, 1185-1193 (1978).
[48]莊達人, VLSI 製造技術, 高立圖書股份有限公司, 2003.
[49]Qin, L., Chen, Q., Cheng, H. & Wang, Q. M. “Analytical study of dual-mode thin film bulk acoustic resonators (FBARs) based on ZnO and AlN films with tilted c-axis orientation.” Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on 57, 1840-1853 (2010).
[50]Bjurstrom, J., Rosen, D., Katardjiev, I., Yanchev, V. M. & Petrov, I. “Dependence of the electromechanical coupling on the degree of orientation of c-textured thin AlN films.” Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on 51, 1347-1353 (2004).
[51]Nowotny, H. & Benes, E. “General one‐dimensional treatment of the layered piezoelectric resonator with two electrodes.” J. Acoust. Soc. Am. 82, 513 (1987).
[52]Wingqvist, G., Bjurstrom, J., Liljeholm, L., Katardjiev, I. & Spetz, A. L. “Shear mode AlN thin film electroacoustic resonator for biosensor applications.” (Sensors, 2005 IEEE, IEEE, 2005).
[53]Zhang, H., Marma, M. S., Kim, E. S., McKenna, C. E. & Thompson, M. E. “Implantable resonant mass sensor for liquid biochemical sensing.” (Micro Electro Mechanical Systems, 2004. 17th IEEE International Conference on.(MEMS), IEEE, 2004).
[54]Minakata, M., Chubachi, N. & Kikuchi, Y. “Variation of c-axis orientation of ZnO thin films deposited by DC diode sputtering.” Japanese Journal of Applied Physics 12, 474 (1973).
[55]Krishnaswamy, S. V., McAvoy, B. R., Takei, W. J. & Moore, R. A. “Oriented ZnO films for microwave shear mode transducers.” (1982 Ultrasonics Symposium, IEEE, 1982).
[56]Wang, J. S., Lakin, K. M. & Landin, A. R. “Sputtered C-Axis Inclined Piezoelectric Films and Shear Wave Resonators.” (37th Annual Symposium on Frequency Control. 1983, IEEE, 1983).
[57]Bjurstrom, J., Wingqvist, G. & Katardjiev, I. “Synthesis of textured thin piezoelectric AlN films with a nonzero c-axis mean tilt for the fabrication of shear mode resonators.” Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on 53, 2095-2100 (2006).
[58]Garbassi, F., Morra, M. & Occhiello, E. Polymer surfaces: from physics to technology , Polymer International,49 ,p.135,2000.
[59]Liston, E. M., Martinu, L. & Wertheimer, M. R. Plasma surface modification of polymers for improved adhesion: a critical review. J. Adhes. Sci. Technol. 7, 1091-1127 (1993).
[60]Shoji, A., Fukushima, T., Kumar, D. S., Kashiwagi, K. & Yoshida, Y. “Surface modification of plasma polymerized silicon resin films produced at different gas atmospheres.” Journal of Photopolymer Science and Technology 19, 241-244 (2006).
[61]Lee, S. D., Hsiue, G. H. & Kao, C. Y. “Preparation and characterization of a homobifunctional silicone rubber membrane grafted with acrylic acid via plasma‐induced graft copolymerization.” Journal of Polymer Science Part A: Polymer Chemistry 34, 141-148 (1996).
[62]Hsieh, Y. L. & Wu, M. “Residual reactivity for surface grafting of acrylic acid on argon glow‐discharged poly (ethylene terephthalate)(PET) films.” J Appl Polym Sci 43, 2067-2082 (1991).
[63]Dai, L., StJohn, H.A.W., Bi, J., Zientek, P., Chatelier, R.C.& Griesser, H.J. “Biomedical coatings by the covalent immobilization of polysaccharides onto gas‐plasma‐activated polymer surfaces.” Surf. Interface Anal. 29, 46-55 (2000).
[64]Marmur, A. “Equilibrium contact angles: theory and measurement.” Colloids Surf. Physicochem. Eng. Aspects 116, 55-61 (1996).
[65]Badey, J. P., Espuche, E. & Sage, D. “A comparative study of the effects of ammonia and hydrogen plasma downstream treatment on the surface modification of polytetrafluoroethylene.” Polymer 37, 1377-1386 (1996).
[66]Wang, R. L. C., Kreuzer, H. J. & Grunze, M. “Molecular conformation and solvation of oligo (ethylene glycol)-terminated self-assembled monolayers and their resistance to protein adsorption.” The Journal of Physical Chemistry B 101, 9767-9773 (1997).
[67]Harder, P., Grunze, M., Dahint, R., Whitesides, G. M. & Laibinis, P. E. “Molecular conformation in oligo (ethylene glycol)-terminated self-assembled monolayers on gold and silver surfaces determines their ability to resist protein adsorption.” The Journal of Physical Chemistry B 102, 426-436 (1998).
[68]Decker, E. L., Frank, B., Suo, Y. & Garoff, S. “Physics of contact angle measurement.” Colloids Surf. Physicochem. Eng. Aspects 156, 177-189 (1999).
[69]Kwok, D. Y. & Neumann, A. W. “Contact angle measurement and contact angle interpretation.” Adv. Colloid Interface Sci. 81, 167-249 (1999).
[70]Bigelow, W. C., Pickett, D. L. & Zisman, W. A. “Oleophobic monolayers* 1:: I. Films adsorbed from solution in non-polar liquids.” J. Colloid Sci. 1, 513-538 (1946).
[71]Nuzzo, R. G. & Allara, D. L. “Adsorption of bifunctional organic disulfides on gold surfaces.” J. Am. Chem. Soc. 105, 4481-4483 (1983).
[72]Ulman, A. “Formation and structure of self-assembled monolayers.” Chem. Rev. 96, 1533-1554 (1996).
[73]Mar, W., Hautman, J. & Klein, M. L. “Molecular dynamics studies of microscopic wetting phenomena on self-assembled monolayers.” Computational materials science 3, 481-497 (1995).
[74]Porter, M. D., Bright, T. B., Allara, D. L. & Chidsey, C. E. D. “Spontaneously Organized Molecular Assemblies .4. Structural Characterization of Normal-Alkyl Thiol Monolayers on Gold by Optical Ellipsometry, Infrared-Spectroscopy, and Electrochemistry.” J. Am. Chem. Soc. 109, 3559-3568 (1987).
[75]Ulman, A. “An introduction to ultrathin organic films: from Langmuir-Blodgett to self-assembly.” (Academic Press New York, 1991).
[76]Engvall, E. & Perlmann, P. “Enzyme-linked immunosorbent assay, ELISA.” The Journal of Immunology 109, 129 (1972).
[77]Crowther, J. R., The ELISA Guidebook Methods in Molecular Biology (electronic book),(2000).
[78]Coons, A. H., Creech, H. J., Jones, R. N. & Berliner, E. “The demonstration of pneumococcal antigen in tissues by the use of fluorescent antibody.” J. Immunol. 45, 7 (1942).
[79]Weller, T. H. &Coons, A.H, “Fluorescent antibody studies with agents of varicella
and herpes zoster propagated in vitro.” Proc. Soc. Exp. Biol. 86, 789-794,(1954).
[80]劉泳呈,發展微流體光碟上之酵素連結免疫吸附法, 逢甲大學化學工程學系碩士論文p.16-p.20,(2008)
[81]Laibinis, P.E., Whitesides, G.M., Allara, D.L., Tao, Y.T., Parikh, A.N.& Nuzzo, R.G. “Comparison of the structures and wetting properties of self-assembled monolayers of n-alkanethiols on the coinage metal surfaces,” copper, silver, and gold. J. Am. Chem. Soc. 113, 7152-7167 (1991).
[82]吳東庭,雙頻固態微型諧震器與濾波器之頻率調變, 國立中山大學電機工程學系碩士論文,(2008)
[83]Lee, Y. E., Kim, S. G., Kim, Y. J. & Kim, H. J. “Effect of oblique sputtering on microstructural modification of ZnO thin films.” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 15, 1194-1199 (1997).
[84]Horowitz, C. M., Monetti, R. A. & Albano, E. V. “Competitive growth model involving random deposition and random deposition with surface relaxation.” Physical Review E 63, 066132 (2001).
[85]Petrov, I., Barna, P. B., Hultman, L. & Greene, J. E. “Microstructural evolution during film growth.” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 21, S117 (2003).
[86]Lakin, K. M. & Wang, J. S. “Acoustic bulk wave composite resonators.” Appl. Phys. Lett. 38, 125-127 (1981).
[87]Xu, W., Zhang, X., Yu, H., Abbaspour-Tamijani, A. & Chae, J. “In-Liquid Quality Factor Improvement for Film Bulk Acoustic Resonators by Integration of Microfluidic Channels.” Electron Device Letters, IEEE 30, 647-649 (2009).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code