Responsive image
博碩士論文 etd-0815111-185932 詳細資訊
Title page for etd-0815111-185932
論文名稱
Title
雙面式氧化鋅壓電換能器之研究
Study of double-sided ZnO piezoelectric transducer
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
122
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-07-15
繳交日期
Date of Submission
2011-08-15
關鍵字
Keywords
不鏽鋼基板、雙面、壓電換能器、氧化鋅、薄膜
thin film, double-side, stainless steel, ZnO, piezoelectric transducers
統計
Statistics
本論文已被瀏覽 5662 次,被下載 1236
The thesis/dissertation has been browsed 5662 times, has been downloaded 1236 times.
中文摘要
本研究使用可撓式不鏽鋼基板(SUS304),製作一新穎的雙面式壓電換能元件,且使用懸臂樑結構,以將生活中的各種低頻振動能轉換為電能並加以利用。
此元件結構為:懸臂樑長度1 cm、振動面積1 cm2及基板厚度50 μm。其製作流程為:先於背面不鏽鋼基板上利用直流磁控濺鍍法沉積一層Pt/Ti附著層,接著於正面SUS304不鏽鋼基板以及背面附著層上以射頻磁控濺鍍法沉積高品質氧化鋅薄膜。藉由掃描式電子顯微鏡以及X光繞射儀,對氧化鋅薄膜進行表面形貌、剖面結構以及結晶特性等物理性質的分析,並將雙面式壓電換能元件夾持於振動試驗儀上進行各種電性之量測。由物性以及電性分析得知,於正面SUS304基板以及背面附著層上以濺鍍功率75 W、工作壓力9 mTorr、基板溫度300 ℃和氧氣濃度60 %時,可得到表面結構緻密以及高度c軸取向之最佳氧化鋅薄膜;而銅金屬因具有低電阻率以及低成本的優點,故本研究選擇銅金屬做為雙面式壓電換能器之電極材料。
本研究於元件單面施加0.5 g的不鏽鋼金屬塊作為質量負載,以促進懸臂樑進行擺動。由振動試驗儀輸入35~150 Hz的振動能,並藉由量測結果得知其共振頻率為80 Hz;由改變元件振動擺幅之量測結果,得知開路電壓隨著振動擺\\\\\\\\\\幅的提升而增加,當振動擺幅為1 mm時,可得最大開路電壓為18.2 V。元件經過1NN5711蕭特基二極體之橋式電路整流以及33 nF的電容濾波,再並聯6 MΩ之負載電阻,可得最大發電功率為1.307 μW/cm2。
Abstract
This investigation examines a novel means of integrating high-performance ZnO piezoelectric thin films with a flexible stainless steel substrate (SUS304) to fabricate a double-sided piezoelectric transducer. The double-sided piezoelectric transducer is constructed by depositing ZnO piezoelectric thin films on both the front and the back sides of SUS304 substrate. The titanium (Ti) and platinum (Pt) layers were deposited using a dual-gun DC sputtering system between the ZnO piezoelectric thin film and the back side of the SUS304 substrate. Scanning electron microscopy and X-ray diffraction of ZnO piezoelectric films reveal a rigid surface structure and highly c-axis-preferring orientation. To fabricate a transducer with a resonant frequency of about 80 Hz, a cantilever length of 1 cm and a vibration area of 1 cm2 are designed, based on the cantilever vibration theory. The maximum open circuit voltage of the power transducer is approximately 18 V. After rectification and filtering through a 33 nF capacitor, a specific power output of 1.3 μW/cm2 is obtained from the transducers with a load resistance of 6 MΩ.
目次 Table of Contents
論文審定書.......................................................................................................................ii
誌謝.................................................................................................................................iii
中文摘要.........................................................................................................................iv
英文摘要.........................................................................................................................v
目錄................................................................................................................................vi
圖目錄.............................................................................................................................ix
表目錄..........................................................................................................................xii
第一章 序論...................................................................................................................1
1-1 研究背景與動機...............................................................................................1
1-2 壓電換能器簡介...............................................................................................4
1-2-1 換能器基板材料.....................................................................................5
1-2-2 壓電層材料.............................................................................................8
1-2-3 電極材料...............................................................................................10
1-2-4 薄膜製備方法.......................................................................................10
1-3 研究目的.........................................................................................................12
第二章 理論分析.........................................................................................................14
2-1 壓電效應原理.................................................................................................14
2-2 氧化鋅壓電薄膜的結構與特性.....................................................................16
2-3 壓電換能器結構與壓電模式..........................................................................17
2-3-1 壓電換能器類型介紹...........................................................................17
2-3-2 懸臂樑結構壓電模式介紹...................................................................19
2-3-3 懸臂樑結構類型介紹...........................................................................21
2-3-4 雙面結構之串接原理...........................................................................22
2-4 懸臂樑式壓電換能器原理.............................................................................23
2-5薄膜沉積原理...................................................................................................27
2-6反應性射頻磁控濺鍍法...................................................................................30
2-6-1 輝光放電原理.......................................................................................30
2-6-2 射頻濺鍍原理.......................................................................................30
2-6-3 磁控濺鍍原理.......................................................................................31
2-6-4 反應性濺鍍原理...................................................................................32
2-7 不鏽鋼於高溫氧化之特性.............................................................................34
2-7-1 Wagner金屬氧化理論...........................................................................34
2-7-2高溫時氧化層的形成原理....................................................................35
2-7-3不鏽鋼高溫氧化之影響........................................................................37
2-8 全波整流濾波電路.........................................................................................38
第三章 研究方法.........................................................................................................41
3-1 雙面式壓電換能器之設計與製作.................................................................42
3-1-1 元件設計...............................................................................................42
3-1-2 雙面式壓電換能器之設計與製作.......................................................42
3-2 薄膜沉積.........................................................................................................45
3-2-1 基板的製備與清洗...............................................................................45
3-2-2 Pt/Ti附著層沉積...................................................................................45
3-2-3 氧化鋅壓電層沉積...............................................................................47
3-3 物性分析.........................................................................................................49
3-3-1 X光繞射分析........................................................................................49
3-3-2 SEM掃描式電子顯微鏡分析...............................................................51
3-3-3 AFM原子力顯微鏡分析.......................................................................52
3-4 電性量測.........................................................................................................54
3-4-1 元件共振頻率量測...............................................................................55
3-4-2 元件振動擺幅量測...............................................................................56
3-4-3 元件電性量測.......................................................................................57
第四章 結果與討論.....................................................................................................59
4-1 加溫製程對雙面式氧化鋅壓電換能器之影響.............................................60
4-1-1加溫對SUS304基板的影響..................................................................60
4-1-2加溫對氧化鋅薄膜的影響....................................................................65
4-1-3 加溫影響之結論...................................................................................66
4-2 參數設計及實驗結果.....................................................................................68
4-2-1 Sample 1 – 物性和電性分析................................................................69
4-2-2 Sample 2 – 物性和電性分析................................................................73
4-2-3 Sample 3 – 物性和電性分析................................................................76
4-2-4 Sample 4 – 物性和電性分析................................................................80
4-2-5 Sample 5 – 物性和電性分析................................................................83
4-2-6 各參數比較和結論...............................................................................86
4-3 雙面式壓電換能器輸出電量討論.................................................................89
4-3-1 不同振動頻率和擺幅對輸出電壓之影響...........................................89
4-3-2 不同負載質量以及施加方式對輸出電壓之影響...............................91
4-3-3元件內阻及輸出功率計算和量測........................................................95
第五章 結論與未來展望.............................................................................................98
5-1 研究結論.........................................................................................................98
5-2 未來展望.........................................................................................................98
參考文獻.......................................................................................................................100
參考文獻 References
[1] O'regan, B. & Gratzel, M., “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films.” Nature 353, 737-740 (1991).
[2] Green, M. A., Emery, K., Hishikawa, Y. & Warta, W., “Solar cell efficiency tables (version 36).” Prog.Photovolt: Res.Appl 18, 346-352 (2010).
[3] Britt, J. & Ferekides, C., “Thin film CdS/CdTe solar cell with 15.8% efficiency.” Appl. Phys. Lett. 62, 2851-2852 (1993).
[4] Hatziargyriou, N. & Zervos, A., “Wind power development in Europe.” Proc IEEE 89, 1765-1782 (2001).
[5] Penche, C., “Guide on how to develop a small hydropower plant.” ESHA, Brussels (2004).
[6] Lund, J. W., Freeston, D. H. & Boyd, T. L., “Direct utilization of geothermal energy 2010 Worldwide Review.” proceedings, World Geothermal Congress (2010).
[7] Tolga Balta, M., Dincer, I. & Hepbasli, A., “Thermodynamic assessment of geothermal energy use in hydrogen production.” Int J Hydrogen Energy 34, 2925-2939 (2009).
[8] Ostergaard, P. A. & Lund, H., “A renewable energy system in Frederikshavn using low-temperature geothermal energy for district heating.” Appl. Energy 88, 479-487 (2011).
[9] Blunden, L. & Bahaj, A., “Tidal energy resource assessment for tidal stream generators.” Proc. Inst. Mech. Eng. A: J. Power Energy 221, 137-146 (2007).
[10] Behrens, J., Rakowsky, N., Hiller, W., Handorf, D., Lauter, M., Papke, J. & Dethloff, K., “amatos: Parallel adaptive mesh generator for atmospheric and oceanic simulation.” Ocean modelling 10, 171-183 (2005).
[11] Venkatasubramanian, R., Siivola, E., Colpitts, T. & O'Quinn, B., “Thin-film thermoelectric devices with high room-temperature figures of merit.” Nature 413, 597-602 (2001).
[12] Carlson, E. J., Strunz, K. & Otis, B. P., “A 20 mV input boost converter with efficient digital control for thermoelectric energy harvesting.” Solid-State Circuits, IEEE Journal of 45, 741-750 (2010).
[13] Hoogwijk, M., Faaij, A., van den Broek, R., Berndes, G., Gielen, D. & Turkenburg, W., “Exploration of the ranges of the global potential of biomass for energy.” Biomass Bioenergy 25, 119-133 (2003).
[14] Openshaw, K., “Biomass energy: Employment generation and its contribution to poverty alleviation.” Biomass Bioenergy 34, 365-378 (2010).
[15] Stephen, N., “On energy harvesting from ambient vibration.” J. Sound Vibrat. 293, 409-425 (2006).
[16] Bouendeu, E., Greiner, A., Smith, P. J. & Korvink, J. G., “A Low-Cost Electromagnetic Generator for Vibration Energy Harvesting.” Sensors Journal, IEEE 11, 107-113 (2011).
[17] Williams, C. & Yates, R. B., “Analysis of a micro-electric generator for microsystems.” Sensors and Actuators A: Physical 52, 8-11 (1996).
[18] Williams, C., Woods, R. & Yates, R., “Feasibility study of a vibration powered micro-electric generator” Compact Power Sources, Digest No. 96/107, IEE Colloquium on, IET (1996).
[19] Shearwood, C. & Yates, R. B., “Development of an electromagnetic microgenerator.” Electron. Lett. 33, 1883-1884 (1997).
[20] Amirtharajah, R. & Chandrakasan, A. P., “Self-powered signal processing using vibration-based power generation.” Solid-State Circuits, IEEE Journal of 33, 687-695 (1998).
[21] Li, W. J., Ho, T. C. H., Chan, G. M. H., Leong, P. H. W. & Wong, H. Y., “Infrared signal transmission by a laser-micromachined, vibration-induced power generator.” Circuits and Systems, 2000. Proceedings of the 43rd IEEE Midwest Symposium on Ser. 1, IEEE (2000).
[22] Glynne-Jones, P., Tudor, M., Beeby, S. & White, N., “An electromagnetic, vibration-powered generator for intelligent sensor systems.” Sensors and Actuators A: Physical 110, 344-349 (2004).
[23] Smith, T. L., Ferry, J. D. & Schremp, F. W., “Measurements of the mechanical properties of polymer solutions by electromagnetic transducers.” J. Appl. Phys. 20, 144-153 (1949).
[24] White, N., Glynne-Jones, P. & Beeby, S., “A novel thick-film piezoelectric micro-generator.” Smart Mater. Struct. 10, 850 (2001).
[25] Glynne-Jones, P., Beeby, S. & White, N., “Towards a piezoelectric vibration-powered microgenerator.” Science, Measurement and Technology, IEE Proceedings- Ser. 148, IET (2001).
[26] Kim, S. Low power energy harvesting with piezoelectric generators (2002).
[27] Kang, J. Y., Kim, H. J., Kim, J. S. & Kim, T. S., “Optimal design of piezoelectric cantilever for a micro power generator with microbubble.” Microtechnologies in Medicine & Biology 2nd Annual International IEEE-EMB Special Topic Conference on, IEEE (2002).
[28] Sood, R. K. & Kim, S., “Piezoelectric micro power generator (PMPG): A MEMS-based energy scavenger.” M.Eng.Thesis (2003).
[29] Fang, H.B., Liu, J.Q., Xu, Z.Y., Dong, L., Wang, L., Chen, D., Cai, B.C. & Liu, Y., “Fabrication and performance of MEMS-based piezoelectric power generator for vibration energy harvesting.” Microelectron. J. 37, 1280-1284 (2006).
[30] Liu, J.Q., Fang, H.B., Xu, Z.Y., Mao, X.H., Shen, X.C., Chen, D., Liao, H. & Cai, B.C., “A MEMS-based piezoelectric power generator array for vibration energy harvesting.” Microelectron. J. 39, 802-806 (2008).
[31] Jeong, S. J., Kim, M. S., Song, J. S. & Lee, H., “Two-layered piezoelectric bender device for micro-power generator.” Sensors and Actuators A: Physical 148, 158-167 (2008).
[32] 吳秉融,氧化鋅薄膜成長於PET基板上並應用於壓電換能器之研究,國立中山大學電機工程學系碩士論文,(2009)。
[33] 黃煜昌,沉積氧化鋅薄膜於不鏽鋼基材及其作為壓電換能器之應用,國立中山大學電機工程學系碩士論文,(2010)。
[34] Rocha, J., Goncalves, L., Rocha, P., Silva, M. & Lanceros-Mendez, S., “Energy Harvesting From Piezoelectric Materials Fully Integrated in Footwear.” Industrial Electronics, IEEE Transactions on 57, 813-819 (2010).
[35] 林盈旭,壓電式振動微發電機之設計與製作,國立中興大學機械工程學系碩士論文,(2002)。
[36] 廖偉翔,壓電換能器於低頻發電應用之設計與分析,國立成功大學機械工程學系碩士論文,(2006)。
[37] Priya, S. & Inman, D. J. in Energy harvesting technologies, Springer Verlag (2008).
[38] Wang, J. C., “Young's modulus of porous materials.” J. Mater. Sci. 19, 801-808 (1984).
[39] 陳麒麟,張榮芳 & 張加強,軟性顯示器發展及關鍵技術現況,機械工業雜誌,258期,P.110-121,(2004)。
[40] European Union, Waste Electrical and Electronic Equipment (WEEE) Regulations, “EU-Directive 96/EC” (2002).
[41] European Union, Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment (RoHS) Regulations, “EU-Directive 95/EC,” September (2002).
[42] Sokmen, U., Stranz, A., Waag, A., Ababneh, A., Seidel, H., Schmid, U. & Peiner, E., “Evaluation of resonating Si cantilevers sputter-deposited with AlN piezoelectric thin films for mass sensing applications.” J Micromech Microengineering 20, 064007 (2010).
[43] Hernando, J., Sanchez-Rojas, J.L., Schmid, U., Ababneh, A., Marchand, G. & Seidel, H., “Characterization and displacement control of low surface-stress AlN-based piezoelectric micro-resonators.” Microsystem Technologies 16, 855-861 (2010).
[44] Doll, J. C., Petzold, B. C., Ninan, B., Mullapudi, R. & Pruitt, B. L., “Aluminum nitride on titanium for CMOS compatible piezoelectric transducers.” J Micromech Microengineering 20, 025008 (2010).
[45] Zhu, G., Yang, R., Wang, S. & Wang, Z. L., “Flexible High-Output Nanogenerator Based on Lateral ZnO Nanowire Array.” Nano letters (2010).
[46] Cha, S.N., Seo, J.S., Kim, S.M., Kim, H.J., Park, Y.J., Kim, S.W. & Kim, J.M., “Sound-Driven Piezoelectric Nanowire-Based Nanogenerators.” Adv Mater (2010).
[47] Huang, C. Y., Sun, J. H. & Wu, T. T., “A two-port ZnO/silicon Lamb wave resonator using phononic crystals.” Appl. Phys. Lett. 97, 031913 (2010).
[48] Bdikin, I., Gracio, J., Ayouchi, R., Schwarz, R. & Kholkin, A., “Local piezoelectric properties of ZnO thin films prepared by RF-plasma-assisted pulsed-laser deposition method.” Nanotechnology 21, 235703 (2010).
[49] Iwata, K., Sakemi, T., Yamada, A., Fons, P., Awai, K., Yamamoto, T., Shirakata, S., Matsubara, K., Tampo, H. & Sakurai, K., “Improvement of ZnO TCO film growth for photovoltaic devices by reactive plasma deposition (RPD).” Thin Solid Films 480, 199-203 (2005).
[50] Fay, S., Steinhauser, J., Nicolay, S. & Ballif, C., “Polycrystalline ZnO: B grown by LPCVD as TCO for thin film silicon solar cells.” Thin Solid Films 518, 2961-2966 (2010).
[51] Baxter, J. B., Walker, A., Van Ommering, K. & Aydil, E., “Synthesis and characterization of ZnO nanowires and their integration into dye-sensitized solar cells.” Nanotechnology 17, S304 (2006).
[52] Luther, J.M., Gao, J., Lloyd, M.T., Semonin, O.E., Beard, M.C. & Nozik, A.J., “Stability Assessment on a 3% Bilayer PbS/ZnO Quantum Dot Heterojunction Solar Cell.” Adv Mater (2010).
[53] Fernandez, M.J., Fontecha, J.L., Sayago, I., Aleixandre, M., Lozano, J., Gutierrez, J., Gracia, I., Cane, C. & Horrillo, M.C., “Discrimination of volatile compounds through an electronic nose based on ZnO SAW sensors.” Sensors Actuators B: Chem. 127, 277-283 (2007).
[54] Wei, C.L., Chen, Y.C., Cheng, C.C., Kao, K.S., Cheng, D.L. & Cheng, P.S., “Highly sensitive ultraviolet detector using a ZnO/Si layered SAW oscillator.” Thin Solid Films 518, 3059-3062 (2010).
[55] Kim, H. J., Lee, C. H., Kim, D. W. & Yi, G. C., “Fabrication and electrical characteristics of dual-gate ZnO nanorod metal–oxide semiconductor field-effect transistors.” Nanotechnology 17, S327 (2006).
[56] Fleischhaker, F., Wloka, V. & Hennig, I., “ZnO based field-effect transistors (FETs): solution-processable at low temperatures on flexible substrates.” J.Mater.Chem. (2010).
[57] Vayssieres, L., Keis, K., Lindquist, S. E. & Hagfeldt, A., “Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO.” The Journal of Physical Chemistry B 105, 3350-3352 (2001).
[58] Yoon, K. H. & Cho, J. Y., “Photoluminescence characteristics of zinc oxide thin films prepared by spray pyrolysis technique.” Mater. Res. Bull. 35, 39-46 (2000).
[59] Nakanishi, Y., Miyake, A., Kominami, H., Aoki, T., Hatanaka, Y. & Shimaoka, G., “Preparation of ZnO thin films for high-resolution field emission display by electron beam evaporation.” Appl. Surf. Sci. 142, 233-236 (1999).
[60] Wang, L., Pu, Y., Chen, YF, Mo, CL, Fang, WQ, Xiong, CB, Dai, JN & Jiang, FY, “MOCVD growth of ZnO films on Si (1 1 1) substrate using a thin AlN buffer layer.” J. Cryst. Growth 284, 459-463 (2005).
[61] Sakurai, K., Kanehiro, M. & Nakahara, K., “Effects of oxygen plasma condition on MBE growth of ZnO.” J. Cryst. Growth 209, 522-525 (2000).
[62] Water, W. & Chu, S. Y., “Physical and structural properties of ZnO sputtered films.” Mater Lett 55, 67-72 (2002).
[63] Li, X., Huang, A. & Zhu, M., “Influence of substrate temperature on the orientation and optical properties of sputtered ZnO films.” Mater Lett 57, 4655-4659 (2003).
[64] Srinivasan, G. & Kumar, J., “Optical and structural characterisation of zinc oxide thin films prepared by sol-gel process.” Crystal Research and Technology 41, 893-896 (2006).
[65] Villanueva, Y. Y., Liu, D. R. & Cheng, P. T., “Pulsed laser deposition of zinc oxide.” Thin Solid Films 501, 366-369 (2006).
[66] 吳朗,電子陶瓷—壓電陶瓷,全欣資訊圖書公司,(1994)。
[67] Smith, A. & Rodriguez-Clemente, R., “Morphological differences in ZnO films deposited by the pyrosol technique: effect of HCl.” Thin Solid Films 345, 192-196 (1999).
[68] Ko, HJ, Chen, YF, Hong, SK, Wenisch, H., Yao, T. & Look, DC, “Ga-doped ZnO films grown on GaN templates by plasma-assisted molecular-beam epitaxy.” Appl. Phys. Lett. 77, 3761 (2000).
[69] Lin, S. S. & Huang, J. L., “The properties of Ti-doped ZnO films deposited by simultaneous RF and DC magnetron sputtering.” Surface and Coatings Technology 191, 286-292 (2005).
[70] El Hichou, A., Addou, M., Bougrine, A., Dounia, R., Ebothe, J., Troyon, M. & Amrani, M., “Cathodoluminescence properties of undoped and Al-doped ZnO thin films deposited on glass substrate by spray pyrolysis.” Mater. Chem. Phys. 83, 43-47 (2004).
[71] Major, S. & Chopra, K., “Indium-doped zinc oxide films as transparent electrodes for solar cells.” Solar energy materials 17, 319-327 (1988).
[72] Lu, F., Lee, H. & Lim, S., “Modeling and analysis of micro piezoelectric power generators for micro-electromechanical-systems applications.” Smart Mater. Struct. 13, 57 (2004).
[73] Kim, S., “Low power energy harvesting with piezoelectric generators”, Published Doctoral Dissertation, Department of Engineering, University of Pittsburgh (2002).
[74] Lawver, A., “Thunder: A new frontier in research for smart materials.” Smart Materials Bulletin 2001, 5-9 (2001).
[75] Kim, H.W., Batra, A., Priya, S., Uchino, K., Markley, D., Newnham, R.E. & Hofmann, H.F., “Energy Harvesting Using a Piezoelectric“Cymbal” Transducer in Dynamic Environment.” Japanese journal of applied physics 43, 6178-6183 (2004).
[76] Anton, S. R. & Sodano, H. A., “A review of power harvesting using piezoelectric materials (2003–2006).” Smart Mater. Struct. 16, R1 (2007).
[77] 莊達人,VLSI 製造技術,高立圖書股份有限公司,(2003)。
[78] Thornton, J. A., “Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings.” Journal of Vacuum Science and Technology 11, 666-670 (1974).
[79] Berry, R. W., Hall, P. M. & Harris, M. T. Thin film technology. D.VAN NOSTRAND CO., INC., PRINCETON, N.J.1968, 706 P (1968).
[80] Vossen, J. L. & Kern, W. Thin film processes II (1991).
[81] Janczak-Bienk, E., Jensen, H. & Sorensen, G., “The influence of the reactive gas flow on the properties of AlN sputter-deposited films.” Materials Science and Engineering: A 140, 696-701 (1991).
[82] Joseph R. Davis. Stainless steels. ASM International. Handbook Committee (1994).
[83] Denny A.Jones. Principles and Prevention of Corrosion. 2nd edition by
Prentice-Hall, pp.418-429 (1992).
[84] Wagner C. Z. Physik. Chem. Vol.B21, p.25 (1933).
[85] 黃維彬,309系列不?袗?高溫氧化行為及除?衒囓韝妞膍s,義守大學材料科學與工程學系碩士論文,(2002)。
[86] 柯賢文,腐蝕及其防制,全華科技圖書公司, (1995)。
[87] Sedra, A. S. & Smith, K. C. Microelectronic circuits, Oxford University Press, USA (1998).
[88] 陳智昇,懸臂樑式壓電發電機之結構阻尼探討,國立中興大學機械工程學系碩士論文,(2004)。
[89] Look, D., Reynolds, D., Hemsky, J., Jones, R. & Sizelove, J., “Production and annealing of electron irradiation damage in ZnO.” Appl. Phys. Lett. 75, 811 (1999).
[90] 黃淑綺,以反應式濺鍍製備氧化鋅薄膜及其摻雜之研究,國立中山大學材料科學研究所碩士論文,(2006)。
[91] Shin, JW, Lee, JY, Kim, TW, No, YS, Cho, WJ & Choi, WK, “Growth mechanisms of thin-film columnar structures in zinc oxide on p-type silicon substrates.” Appl. Phys. Lett. 88, 091911 (2006).
[92] Mirica, E., Kowach, G., Evans, P. & Du, H., “Morphological evolution of ZnO thin films deposited by reactive sputtering.” Crystal growth & design 4, 147-156 (2004).
[93] 劉吉卿,以兩階段濺鍍法沉積氧化鋅壓電薄膜於薄膜體聲波共振器之應用,國立中山大學電機工程學系碩士論文,(2006)。
[94] Akiyama, M., Nagao, K., Ueno, N., Tateyama, H. & Yamada, T., “Influence of metal electrodes on crystal orientation of aluminum nitride thin films.” Vacuum 74, 699-703 (2004).
[95] Paradiso, J., Abler, C., Hsiao, K. & Reynolds, M., “The magic carpet: physical sensing for immersive environments”, CHI'97 extended abstracts on Human factors in computing systems: looking to the future, ACM (1997).
[96] Moll, F. &Rubio, A., “An approach to the analysis of wearable body-powered systems.” Proceedings of the Mixed Design of Integrated Circuits and Systems Conference ( 2000).
[97] Shenck, N. S. & Paradiso, J. A., “Energy scavenging with shoe-mounted piezoelectrics.” Micro, IEEE 21, 30-42 (2001).
[98] Feenstra, J., Granstrom, J. & Sodano, H., “Energy harvesting through a backpack employing a mechanically amplified piezoelectric stack.” Mechanical Systems and Signal Processing 22, 721-734 (2008).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code