Responsive image
博碩士論文 etd-0815111-233024 詳細資訊
Title page for etd-0815111-233024
論文名稱
Title
一次植入式之脊椎電刺激系統晶片與高速電容耦合電路研製
Design of One-Time Implantable SCS System SOC and Inter-chip Capacitance Coupling Circuit
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
64
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-07-28
繳交日期
Date of Submission
2011-08-15
關鍵字
Keywords
ASK解調變、電容耦合、高速傳接器、雙向溝通、脊椎電刺激、多控制模式
bidirectional communication, capacitive coupling, multiple modes, SCS, high-speed data transceiver, ASK demodulator
統計
Statistics
本論文已被瀏覽 5635 次,被下載 513
The thesis/dissertation has been browsed 5635 times, has been downloaded 513 times.
中文摘要
本論文包含兩個主題:一次植入式之脊椎電刺激(Spinal cord stimulation, SCS)系統晶片,以及高速耦合電容電路之設計。

第一個主題探討一可經由體外端線圈感應供電,並採用鋰電池儲存多餘電荷以供應體內裝置電源,且同時利用線圈達到體內外雙向溝通的脊椎電刺激系統晶片。該晶片具有可同時調整四組電極刺激樣式,並具有多模式來控制系統,大幅增進設定刺激樣式的靈活度,以及在非刺激期間低功率之需求。SCS晶片為體內刺激產生器之核心電路,其中包含一新式ASK(Amplitude-shift keying)解調變器可提供體內基頻電路穩定之解調訊號,使醫護人員對體內刺激波形之資料設定更為可靠。本設計使用TSMC 1P6M 0.18 μm 製程,製作出僅 1.71 × 1.41 mm2 之晶片面積,而藉此實作出的SCS體內刺激產生器也可控制於 24 cm3 以下,平均功率也僅 59.4 mW。

第二個主題探討一高速耦合電容電路之設計,利用此架構可使晶片間數位訊號以電容耦合方式傳接,並藉由將傳接電路埋設置耦合電容下端,進而縮減傳接模組面積。該電路在晶圓封裝量測上與3D積體電路之訊號傳輸上有十分前瞻之應用,本電路採用TSMC 1P6M 0.18 μm製程實作,具備可高達2 Gbps之傳輸速率,面積為1045 × 894 μm2,同時功耗也僅只有21.47 mW,在未來積體電路領域之可測試性設計應用方面深具潛力。
Abstract
The thesis is composed of two topics: A SOC design for one-time implantable spinal cord stimulation system (SCS), and the design of an inter-chip capacitance coupling circuit.
In the first topic, the SOC design using wireless power and data transmission techniques for the SCS system is presented in this work. The proposed SOC can control 4 electrodes to generate different patterns of stimulation waves. It has multiple modes to drive whole the SCS system. Notably, the SOC contains a novel ASK demodulator which converts the ASK signals into digital signals reliably. The SOC is implemented using a typical 0.18-μm 1P6M CMOS process. The chip area is only 1.71 * 1.41 mm2. Besides, the volume of the implantable SCS pulse generator utilizing this SOC is less than 24 cm3, and the power consumption is only 59.4 mW.
In the second topic, a high-speed inter-chip capacitance coupling circuit is presented. Digital signals between two chips can be transceived through capacitive coupling of the proposed circuit. Notably, the transceivers are designed below the capacitors to attain the area reduction. It is an advanced application for high-speed wafer testing and 3D IC communication. A prototype chip is presented to achieve 2 Gbps on silicon using a typical 0.18 μm 1P6M CMOS process. The chip area is 1045 × 894 μm2. Besides, it only costs 21.47 mW in terms of power consumption. This capacitive coupling technique for high-speed digital circuit has great potential in the coming future.
目次 Table of Contents
致謝 iv
摘要 v
Abstract vi
目錄 vii
圖次 ix
表次 xi
第一章 概論 1
1.1 前言 1
1.2 相關文獻與研究探討 3
1.2.1 一次植入式之脊椎電刺激系統晶片 3
1.2.2 高速電容耦合電路設計 5
1.3 研究動機 9
1.4 論文大綱 9
第二章 一次植入式之脊椎電刺激系統晶片 10
2.1 簡介 10
2.2 電路架構 10
2.3 電路設計 14
2.3.1 ASK解調變器 14
2.3.2 基頻電路 17
2.3.3 Reset訊號產生器 20
2.3.4 時脈產生器 21
2.3.5 電流式數位類比轉換器 22
2.3.6 電池電壓偵測電路 24
2.3.7 低壓降線性穩壓器 25
2.3.8 LSK調變器 28
2.3.9 刺激波形產生器 28
2.3.10 電池充電模組與電源管理 28
2.4 預計規格與效能比較 29
2.5 晶片佈局 30
2.5.1 佈局平面圖 30
2.5.2 佈局考量 31
2.6 晶片量測 32
2.6.1 晶片實作與量測結果 32
第三章 高速耦合電容電路設計 37
3.1 簡介 37
3.2 電路架構 37
3.2.1 單端時脈電路 38
3.2.2 雙端訊號電路 39
3.3 電路設計 40
3.4 預計規格與效能比較 43
3.5 晶片佈局 44
3.6 量測考量 45
3.7 電路模擬與晶片量測 46
3.7.1 電路模擬 46
3.7.2 晶片量測 47
第四章 結論及成果 49
參考文獻 50

參考文獻 References
[1] 呂玉潔. (2009, Dec. 17) 脊椎刺激器主要產品介紹 [Online]. Available: http://www.libnet.sh.cn:82/gate/big5/www.istis.sh.cn/list/list.aspx?id=6338
[2] Spinal Cord Stimulators: A Market Snapshot , [Online]. Available: http://www.prbd.net/News_1761.aspx
[3] K. Kumar, G. Hunter, and D. D. Demeria, “Treatment of chronic pain by using intrathecal drug therapy compared with conventional pain therapies: a cost-effectiveness analysis 803,” J. of Neurosurgery, vol. 97, no. 4, pp. 803-810, Oct. 2002.
[4] T. L. Mcjunkin, P. J. Lynch, and A. L. Wuollet. (2010, May 1) Spinal Cord Stimulation [Online]. Available: http://www.paindoctor.com/treatments/procedures/spinal-cord-stimulation
[5] R. Melzack and P. D. Wall, “Pain mechanism: A new theory,” Science, vol. 150, pp. 971-979, Nov. 1965.
[6] B. A. Meyerson and B. Linderoth, “Mode of action of spinal cord simulation in neuropathic pain,” J. of Pain and Symptom Management, vol. 31, no. 4S, pp. S6-S12, Apr. 2006.
[7] E. Buchser, A. Durrer, and E. Albrecht, “Spinal cord stimulation for the management of refractory angina pectoris,” J. of Pain and Symptom Management, vol. 31, no. 4S, pp. S36-S42, Apr. 2006.
[8] B. A. Simpson, “The role of neurostimulation: the neurosurgical perspective,” J. of Pain and Symptom Management, vol. 31, no. 4S, pp. S3-S5, Apr. 2006.
[9] D. T. Ubbink and H. Vermeulen, “Spinal cord stimulation for critical leg ischemia: A review of effectiveness and optimal patient selection,” J. of Pain and Symptom Management, vol. 31, no. 4S, pp. S30-S35, Apr. 2006.
[10] J.-P. Van Buyten, “Neurostimulation for chronic neuropathic back pain in failed back surgery syndrome,” J. of Pain and Symptom Management, vol. 31, no. 4S, pp. S25-S29, Apr. 2006.
[11] J. Mouine and K. Ammar, “A miniaturized implantable spinal cord stimulator for treating intractable chronic pain,” in Proc. 1st Annual Inter. IEEE-EMBS Special Topic Conf. on Microtechnologies in Medicine & Biology, pp. 630-634, Oct. 2000.
[12] K. Arabi and M. A. Sawan, “Electronic design of a multichannel programmable implant for neuromuscular electrical stimulation,” IEEE Trans. on Rehab. Eng., vol. 7, no. 2, pp. 204-214, Jun. 1999.
[13] H.-C. Wu, S.-T. Young, and T.-S. Kuo, “A versatile multichannel direct-synthesized electrical stimulator for FES applications,” IEEE Trans. on Instrumentation and Measurement, vol. 51, no. 1, pp. 2-9, Feb. 2002.
[14] M. Ghovanloo, “Switched-capacitor based implantable low-power wireless microstimulator systems,” in Proc. Inter. Symp. on Circuits and Systems, pp. 2197-2200, May 2006.
[15] K. Arabi and M. A. Sawan, “A monolithic miniaturized programmable implant for neuromuscular stimulation,” in Proc. the 17th Annual Inter. Conf. of the IEEE Engineering in Medicine and Biology Society, pp. 1131-1132, Sep. 1995.
[16] K. Arabi and M. A. Sawan, “A multiprogrammable microstimulator dedicated to bladder dysfunctions,” in Proc. the 16th Annual Inter. Conf. of the IEEE Engineering in Medicine and Biology Society, pp. 974-975, Sep. 1994.
[17] J. Mouine, K. A. Ammar, and Z. Chtourou, “A completely programmable and very flexible implantable pain controller,” in Proc. the 22th Annual Inter. Conf. of the IEEE Engineering in Medicine and Biology Society, pp. 1104-1107, Jul. 2000.
[18] Medtronic, Inc., Networks, [Online]. Available: http://www.medtronic.com
[19] Bioinduction Pty. Ltd., Networks, [Online].Available: http://www.acticare.com/
[20] Advanced Bionics, Networks, [Online]. Available: http://www.bionics.com/
[21] C.-K. Liang, J.-J. J. Chen, C.-L. Chung, C.-L. Cheng and C.-C. Wang, “An implantable bi-directional wireless transmission system for transcutaneous biological signal recording,” Physiological Measurement, vol. 26, no. 1, pp. 83-97, Feb. 2005.
[22] Y.-T. Li, J.-J. J. Chen, C.-H. Chang, C.-C. Wang, and C.-K. Liang, “Development of wireless biomicrosystem for measuring electrode-tissue impedance,” J. of Medical and Biological Engineering, vol. 25, no. 3, pp. 99-105, Sep. 2005.
[23] C.-C. Wang, T.-J. Lee, Y.-T. Hsiao, U. F. Chio, C.-C. Huang, J.-J. J. Chen, and Y.-H. Hsueh, “A multi-parameter implantable micro-stimulator SOC,” IEEE Trans. on Very Large Scale Integration (VLSI) Systems, vol. 13, no. 12, pp. 1399-1402, Dec. 2005.
[24] C.-C. Wang, T.-J. Lee, Y.-T. Hsiao, and U.-F. Chio, “Baseband design of a wireless transceiver for implantable neural interface,” Inter. J. of Chinese Institute of Electrical Engineering, vol. 11, no. 4, pp. 355-360, Nov. 2004.
[25] C.-C. Wang, C.-H. Hsu, S.-B. Tseng, and D. Shmilovitz, “A onetime implantable wireless power bidirectional transmission spinal cord stimulation system,” in Proc. Inter. Symp. on VLSI Design Automation and Test, pp. 288-291, Apr. 2010.
[26] T. S. Meloy and J. Martin, “Spinal cord stimulation,” U.S. Patent No. 6,169,924, Jan. 2, 2001.
[27] Texas Instruments, Inc., Networks, [Online]. Available:
http://www.alldatasheet.com/datasheet-pdf/pdf/94247/TI/BQ25010.html
[28] T. Ezaki, K. Kondo, H. Ozaki, N. Sasaki, H. Yonemura, M. Kitano, S. Tanaka, and T. Hirayama, “A 160 gb/s interface design configuration for multichip LSI,” in IEEE Inter. Solid State Circuits Conf. Dig. Tech. Papers, pp. 140-141, Feb. 2004.
[29] K. Kanda, D. D. Antono, K. Ishida, H. Kawaguchi, T. Kuroda, and T. Sakurai, “A 1.27Gb/s/ch 3mW/pin wireless superconnect (WSC) interface scheme,” in IEEE Inter. Solid State Circuits Conf. Dig. Tech. Papers, pp. 186-187, Feb. 2003.
[30] J. Burns, L. Mcllrath, C. Lewis, A. Loomis, K.Warner, and P. Wyatt, “Three-dimensional integrated circuits for low-power, high-bandwidth systems on a chip,” in IEEE Inter. Solid State Circuits Conf. Dig. Tech. Papers, pp. 268-269, Feb. 2001.
[31] D. Mizoguchi, Y. B. Yusof, N. Miura, T. Sakurai, and T. Kuroda, “A 1.2gb/s/pin wireless superconnect based on inductive inter-chip signaling (IIS),” in IEEE Inter. Solid State Circuits Conf. Dig. Tech. Papers, pp. 142-143, Feb. 2004.
[32] L. Liu, J. M. Wilson, S. E. Mick, J. Xu, L. Zhang, and P. D. Franzon, “3 gb/s AC coupled chip-to-chip communication using a low swing pulse receiver,” IEEE J. of Solid-State Circuits, vol. 41, no. 1, pp. 287-296, Jan. 2006.
[33] M. Daito, Y. Nakata, S. Sasaki, H. Gomyo, H. Kusamitsu, Y. Komoto, K. Lizuka, K. Lkeuchi, G. S. Kim, M. Takamiya, and T. Sakurai, “Capacitively coupled non-contact probing circuits for membrane-based wafer-level simultaneous testing,” in IEEE Inter. Solid State Circuits Conf. Dig. Tech. Papers, pp. 144-145, Feb. 2010.
[34] C.-H. Hsu, S.-B. Tseng, Y.-J Hsieh, and C.-C. Wang, “One-Time Implantable SCS System,” in Proc. Inter. Conf. on Bioinformatics and Biomedical Engineering, pp. 1-4, May 2011.

電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code