Responsive image
博碩士論文 etd-0815112-092459 詳細資訊
Title page for etd-0815112-092459
論文名稱
Title
高速 25Gb/s 直調分佈回饋式雷射二極體之設計與製作
Design and Fabrication of High-Speed 25Gb/s Directly Modulated DFB Semiconductor Laser Diode
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
106
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-18
繳交日期
Date of Submission
2012-08-15
關鍵字
Keywords
平坦化、梁脊波導、共平面波導、DFB 雷射、直接調變
Planarization, Ridge waveguide, Coplanar waveguide, DFB lasers, Directly modulation
統計
Statistics
本論文已被瀏覽 5693 次,被下載 1224
The thesis/dissertation has been browsed 5693 times, has been downloaded 1224 times.
中文摘要
在 Internet access 資訊容量快速增加的情形下,光纖通訊傳輸容量之要求已朝高速且高效率之方向進行。為了使結構簡單、成本降低,高速 25Gb/s 直接調變半導體雷射對於長距離高速傳輸系統來說是絕對必要的。其好處是可以利用四通道的系統模組達到 100Gb/s 的應用以及可套用波分多工使頻寬增加。
本研究使用直接調變 DFB 雷射已成功達到 25Gb/s 的直接調變速度,利用高速共平面傳輸線結構配合半絕緣基板,3dB 頻寬可大於 20GHz。並藉由電訊號反射量測實驗證實,降低元件的寄生效應可達到較高的直接調變速度。
量測證實操作在室溫下,波長 1300nm 與 1550nm 雷射利用錐形光纖量測到之轉換效率分別為 0.045 與 0.07mW/mA,輸出功率在 60mA 時分別可達 2.73 與 3.96mW/facet。旁模抑制比大於 35dB。3dB 頻寬分別大於 16GHz、20.5GHz,鬆弛振盪頻率分別為 12GHz、16.6GHz。並已完成 25Gb/s 眼圖量測以及高速數據傳輸測試。
Abstract
With a rapid increase in information capacity of Internet access, high-speed, highly-efficiency, and cost-effectiveness laser source for optical fiber communication is required. High-speed 25Gb/s directly modulated laser is essential of this communication range, because of its simple structure, direct-modulation characteristics, low cost, and integration capability for wavelength division multiplexing (WDM) system, and moreover, it can achieved 100Gb/s data transmission by four channel module system.
In this work, data modulation speed of 25Gb/s direct modulation DFB laser has been achieved. By employing high-speed coplanar waveguide structure with semi-insulating substrate, high-speed with f3dB > 20GHz has been demonstrated. By the electrical reflection measurement, it confirmed that the high-speed direction modulation can be realized through reduction of electrical parasitics.
The laser chips is measured under continuous-wave mode at room temperature. In 1300nm and 1550nm wavelength device, slope efficiency obtained by taper fiber coupled of 0.045 and 0.07mW/mA respectively, output power up to 2.73 and 3.96mW/facet at 60mA. The Side Mode Suppression Ratio was greater than 35dB. 3dB bandwidth of greater than 16GHz and 20.5GHz, relaxation oscillation frequency of 12GHz and 16.6GHz. Finally, clearly back-to-back 25Gb/s eye diagram and error-floor-free performance were obtained.
目次 Table of Contents
論文授權書............................................................................................................................... ⅰ
中文審定書.............................................................................................................................. ⅱ
英文審定書............................................................................................................................. ⅲ
致謝............................................................................................................................................. ⅴ
中文摘要.................................................................................................................................. ⅵ
英文摘要................................................................................................................................ ⅶ
目錄......................................................................................................................................... ⅷ
圖次........................................................................................................................................... ⅺ
表次.......................................................................................................................................... ⅹⅴ
第一章 緒論.................................................................................................................... 1
1.1 前言.................................................................................................................... 1
1.2 研究動機.......................................................................................................... 6
1.3 論文架構.......................................................................................................... 8
第二章 半導體雷射之理論與機制......................................................................... 9
2.1 雷射組成.......................................................................................................... 9
2.2 半導體雷射原理.......................................................................................... 10
2.3 雷射種類........................................................................................................ 13
2.4 數位訊號時間分析..................................................................................... 17
2.5 訊號調變........................................................................................................ 21
2.6 靜態響應特性.............................................................................................. 22
2.7 動態響應特性.............................................................................................. 25
2.7.1 開啟延遲............................................................................................ 25
2.7.2 雷射調變頻寬.................................................................................. 27
2.7.3 頻寬限制因素.................................................................................. 30
2.7.4 高電流驅動結果............................................................................. 34
第三章 元件之模擬設計與製作........................................................................... 37
3.1 材料結構與特性.......................................................................................... 37
3.1.1 傳輸線................................................................................................. 37
3.1.2 梁脊波導............................................................................................ 41
3.1.3 磊晶片................................................................................................. 42
3.2 元件製作程序.............................................................................................. 45
3.2.1 辨別梁脊蝕刻方向......................................................................... 45
3.2.2 蝕刻液選擇....................................................................................... 45
3.2.3 製作流程............................................................................................ 46
3.3 元件製程結果與討論................................................................................ 66
第四章 實驗結果與討論.......................................................................................... 69
4.1 直流量測分析.............................................................................................. 69
4.1.1 L-I-V 量測......................................................................................... 69
4.1.2 光頻譜量測....................................................................................... 71
4.2 小訊號量測分析.......................................................................................... 73
4.3 大訊號量測分析.......................................................................................... 81
4.3.1 眼圖量測............................................................................................ 81
4.3.2 位元誤碼率量測............................................................................. 83
4.4 元件量測結果與討論................................................................................ 85
第五章 結論與未來工作.......................................................................................... 87
5.1 結論.................................................................................................................. 87
5.2 未來工作........................................................................................................ 88
參考文獻................................................................................................................................. 89
參考文獻 References
[1] Cisco Visual Networking Index: Forecast and Methodology, 2010-2015
[2] H. J. Dutton, “Understanding Optical Communications,” IBM International Technical Support Organization, 1998
[3] K.Nakahara, T. Tsuchiya, T. Kitatani, K. Shinoda, T. Kikawa, F. Hamano, S. Fujisaki, T. Taniguchi, E. Nomoto, M. Sawada, and T. Yuasa, “12.5-Gb/s Direct Modulation Up to 115 ℃ in 1.3-μm InGaAlAs-MQW RWG DFB Lasers With Notch-Free Grating Structure,” J. Lightw. Technol., vol. 22, pp. 159-165, 2004
[4] K. Nakahara, T. Tsuchiya, T. Kitatani, K. Shinoda, T. Taniguchi, T. Kikawa, M. Aoki, and M. Mukaikubo, “40-Gb/s Direct Modulation With High Extinction Ratio Operation of 1.3-μm InGaAlAs Multiquantum Well Ridge Waveguide Distributed Feedback Lasers,” IEEE Photon. Technol. Lett., vol. 19, pp. 1436-1438, 2007
[5] T. Fukamachi, K. Adachi, K. Shinoda, T. Kitatani, S. Tanaka, M. Aoki, and S. Tsuji, “Wide Temperature Range Operation of 25-Gb/s 1.3-μm InGaAlAs Directly Modulated Lasers,” IEEE J. Select. Topics Quantum Electron., vol. 17, pp. 1138-1145, 2011
[6] K. Otsubo, M. Matsuda, K. Takada, S. Okumura, M. Ekawa, H. Tanaka, S. Ide, K. Mori, and T. Yamamoto, “1.3-μm AlGaInAs Multiple-Quantum-Well Semi-insulating Buried-Heterostructure Distributed-Feedback Lasers for High-Speed Direct Modulation,” IEEE J. Select. Topics Quantum Electron., vol. 15, pp. 687-693, 2009
[7] Y. Tanaka, M. Ishida, K. Takada, T. Yamamoto, H. Z. Song, Y. Nakata, M. Yamaguchi, K. Nishi,M. Sugawara, and Y. Arakawa, “25 Gbps Direct Modulation in 1.3-μm InAs/GaAs High-Density Quantum Dot Lasers,” CLEO/QELS, 2010
[8] T. Uesugi, T. Hamaguchi, S. Nanjou, K. Shibuya, K. Yamagishi, G. Sakaino, T. Takiguchi, S. Shirai, K. Mochizuki, H. Aruga, and A. Sugitatsu, “25 Gbps Direct Modulation of a III-V Semiconductor Laser Integrated on a Silicon Waveguide Platform,” OECC, 2011
[9] T. Fujisawa, S. Kanazawa, H. Ishii, N. Nunoya, Y. Kawaguchi, A. Ohki, N. Fujiwara, K. Takahata, R. Iga, F. Kano, and H. Oohashi, “1.3-μm 4×25-Gb/s Monolithically Integrated Light Source for Metro Area 100-Gb/s Ethernet,” IEEE Photon. Technol. Lett., vol. 23, pp. 356-358, 2011
[10] K. Petermann, “Laser Diode Modulation and Noise,” Kluwer Academic, 1991
[11] L. A. Coldren, and S. W. Corzine, “Diode Lasers and Photonic Integrated Circuits,” John Wiley and Sons, 1995
[12] G. P. Agrawal, “Fiber-Optic Communication Systems,” John Wiley and Sons, 1997
[13] D. K. Mynbaey, and L. L. Scheiner, “Fiber-Optic Communications Technology,” Prentice Hall, 2000
[14] S. L. Chuang, “Physics of Photonic Devices,” John Wiley and Sons, 2009
[15] “數位波型的時間,” National Instruments, 2008
[16] Y. Yamamoto, “Coherence Amplification and Quantum Effects in Semiconductor Lasers,” New York: Wiley, 1991
[17] Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica, vol. 34, pp. 149-154, 1967
[18] D. M. Pozar, “Microwave Engineering,” John Wiley & Sons, 1998
[19] Y. J. Chiu, S. Z. Zhang, a V. Kaman, b J. Piprek, and J. E. Bowers, “High-Speed Traveling-Wave Electroabsorption Modulators,” Department of Electrical and Computer Engineering University of California at Santa Barbara, Santa Barbara, CA 93106 a currently with Zaffire Inc., b currently with Calient Networks Inc.
[20] M. Aoki, M. Komori, T. Tsuchiya, H. Sato, K. Nakahara, and K. Uomi, “InP-Based Reversed-Mesa Ridge-Waveguide Structure for High-Performance Long-Wavelength Laser Diodes,” IEEE J. Select. Topics Quantum Electron., vol. 3, pp. 672-683, 1997
[21] C. E. Zah, R. Bhat, B. N. Pathak, F. Favire, W. Lin, M. C. Wang, N. C. Andreadaki, D. M. Hwang, M. A. Koza, T. P. Lee, Z. Wang, D. Darby, D. Flanders, and J. J. Hsieh, “High-Performance Un-cooled 1.3-μm AlxGayIn1-x-yAs/InP Strained-Layer Quantum-Well Lasers For Subscriber Loop Applications,” IEEE J. Quantum Electron., vol. 30, pp. 511-523, 1994
[22] 陳奕任, “Planarized InGaAsP Semiconductor Lasers for Giga-bit Applications,” NSYSU, 2003
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code