Responsive image
博碩士論文 etd-0815112-163439 詳細資訊
Title page for etd-0815112-163439
論文名稱
Title
單一神經元仿真器和前級電路之膜片鉗制設置
A Neuron Emulator and Headstage Circuit for Patch Clamp Setups
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
96
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-30
繳交日期
Date of Submission
2012-08-15
關鍵字
Keywords
動作電位、電流鉗制、電壓鉗制、單電極、前級、膜片鉗制、神經元仿真器
patch clamp, neuron emulator, headstage, single electrode, action potential, current clamp, voltage clamp
統計
Statistics
本論文已被瀏覽 5692 次,被下載 288
The thesis/dissertation has been browsed 5692 times, has been downloaded 288 times.
中文摘要
本論文呈現單一神經元仿真器和前級電路之膜片鉗制設置,其中包含模擬、量測和驗證之結果。此電路被實現在一個印刷電路板上,可被電池驅動且便於攜帶。使用前級電路從單一電極端來觀察,仿真器提供單一活神經元之被動(靜息電位)和主動(動作電位)的電子特性,這可作為測試像電流鉗制、電壓鉗制或膜片鉗制放大器等電生理的設備。微處理器控制動作電位被以電壓和頻率相關的方式產生在閥值發射電壓為-60 mV到-30 mV之間的發射頻率為1 Hz到10 Hz,起初,電荷儲存110 pC在電容上,藉由發射神經元,電荷被釋放。與直接用單一電流或電壓源相比較下,這設計導致更理想化的模擬動作電位根據離子電流在單一活神經元產生的情形。從原型的測試結果顯示,神經元仿真器符合設計的規格且這能夠呈現電壓鉗制和速率響應的電流鉗制功能。使用商用的鉗制放大器在實際的記錄環境下,得到的量測結果證實仿真器運作。
Abstract
This thesis presents a neuron emulator and headstage circuit for patch clamp setups and provides simulation, measurement and verification results. The circuit implemented on a printed circuit board (PCB) is battery powered and portable. The emulator provides both passive (resting potential) and active (action potential) electrical properties of a live neuron as seen from a single electrode by using the headstage circuit. It can be used to test electrophysiological equipment such as current-clamp, voltage-clamp or patch-clamp amplifiers. The action potentials (APs) are generated with a voltage-dependent frequency controlled by a microcontroller implementing a firing range from -60 mV to -30 mV and firing frequency from 1 Hz to10 Hz. The charge released by firing the neuron is initially stored on a 110 pC capacitor. Compared to directly using a current or voltage source, this design results in a more realistic simulation of the APs generated by ionic currents in a live neuron. The measured results from a prototype demonstrate that the neuron emulator meets the design specifications and it is capable of performing voltage clamp and rate responsive current clamp functionality. Measured results using a commercial clamp amplifier are provided to confirm the emulator operation in a practical recording environment.
目次 Table of Contents
中英文論文審定書 i
Acknowledgements iii
摘要 v
Abstract vi
List of Figures x
List of Table xiii
List of Abbreviations xiv
List of Symbols xv
Chapter 1 Introduction 1
1.1 Background 1
1.2 Objectives 5
1.3 Thesis Chapter Overview 6
Chapter 2 Background for Neuron Model Design 8
2.1 Membrane Potential (MP) 8
2.2 Hodgkin-Huxley Model 12
2.3 Voltage Clamp Technique 14
2.4 Patch Clamp Technique 15
Chapter 3 Circuit Design 17
3.1 Introduction 17
3.2 Neuron Emulator and Headstage Circuit Specification 17
3.2.1 Cell Model with AP Generation 19
3.2.2 Simplified Model for the Neuron Cell 21
3.2.3 Simplified AP Generator 22
3.3 Headstage Amplifiers 24
3.3.1 Neuron Emulator in C_C 25
3.3.2 Neuron Emulator in V_C 26
3.4 Comparison with CV-7B Headstage 28
3.4.1 CV-7B Headstage in C_C 29
3.4.2 CV-7B Headstage in V_C 30
Chapter 4 Simulated Results 31
4.1 Introduction 31
4.1.1 Cell Model with AP Generation 31
4.1.2 Simplified AP Generator 32
4.2 Headstage Amplifiers 33
4.2.1 Neuron Emulator in C_C 33
4.2.2 Neuron Emulator in V_C 35
4.3 Comparison with CV-7B Headstage 38
4.3.1 CV-7B Headstage in C_C 38
4.3.2 CV-7B Headstage in V_C 39
Chapter 5 Hardware Implementation 40
5.1 Choice of Components 40
5.1.1 Microprocessor Programming 42
5.1.2 AP Generator 45
5.1.3 Current Clamp Amplifier 46
5.1.4 Voltage Clamp Amplifier 46
5.2 Printed Circuit Board Operation 46
5.3 Experimental Results 49
5.3.1 Results of Current Clamp Mode 49
5.3.2 Results of Voltage Clamp Mode 53
5.4 Results of Neuron Emulator Mode for CV-7B Headstdage 55
5.4.1 CV-7B Headstdage in C_C 55
5.4.2 CV-7B Headstdage in V_C 57
5.5 Comparison 58
Chapter 6 Conclusions and Future Work 61
References 63
Appendix - 1 -
A. Equivalent circuits representing the functions provided by the microcontroller - 1 -
A1. Rest Potential Extractor (RP Extractor) - 1 -
A2. Voltage Controlled Oscillator (VCO) - 3 -
A3. Threshold Comparator - 5 -
B. Assembly code for microcontroller - 7 -
參考文獻 References
[1] J. Graham and R. W. Gerard, “Membrane potentials and excitation of impaled single muscle fibers,” J. Cell. Comp. Physiol., 28: 99–117, 1946.
[2] G. Ling and R. W. Gerard, “The normal membrane potential of frog sartorius fibers,” J. Cell. Comp. Physiol., 34: 383–396, 1949.
[3] A.L. Hodgkin and A.F. Huxley, “Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo,” J. Physiol., 116, 449–472, 1952.
[4] A.L. Hodgkin and A.F. Huxley, “The components of membrane conductance in the giant axon of Loligo,” J. Physiol., 116, 473–496, 1952.
[5] A.L. Hodgkin and A.F. Huxley, “The dual effect of membrane potential on sodium conductance in the giant axon of Loligo,” J. Physiol., 116, 497–506, 1952.
[6] A.L. Hodgkin and A.F. Huxley, “A quantitative description of membrane current and its application to conductance and excitation in nerve,” J. Physiol., 117, 500–544, 1952.
[7] K.S. Cole, “Dynamic electrical characteristics of the squid axon membrane,” Arch. Sci. Physiol., 3, pp. 253–258, 1949.
[8] O.P. Hamill, A. Marty E. Neher, B. Sakmann, and F.J. Sigworth, “Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches,” Pflugers Archiv Eur J of Physioly, 391, pp. 85–100, 1981.
[9] A. Rouzrokh, S. A. Ebrahimi, and M. Mahmoudian, “Construction, calibration, and validation of a simple patch-clamp amplifier for physiology education,” Advances in Physiology Education, vol. 33, no. 2, pp. 121-129, 2009
[10] P. Weerakoon, E. Culurciello, Y. Yang, J. Santos-Sacchi, P. J. Kindlmann, and F. J. Sigworth, “Patch-clamp amplifiers on a chip,” J. Neuroscience Methods, no. 192, pp. 187–192, 2010.
[11] N. Fertig, R. H. Blick, and J. C. Behrends, “Whole cell patch clamp recording performed on a planar glass chip,” Biophysical journal, Vol. 82, pp. 3056-3062, 2002.
[12] K. G. Klemic, J. F. Klemic, M. A. Reed, and F. J. Sigworth, “Micromolded PDMS planar electrode allows patch clamp electrical recordings from cells,” Biosensors and Bioelectronics, Vol. 17, pp. 597–604, 2002.
[13] R. Pantoja, J. M. Nagarah, D. M. Starace, N. A. Melosh, R. Blunck, F. Bezanilla, and J. R. Heath, “Silicon chip-based patch-clamp electrodes integrated with PDMS microfluidics,” Biosensors and Bioelectronics, Vol. 20, pp. 509-517, 2004.
[14] T. Lehnert and R. Netzer, “Realization of hollow SiO2 micronozzles for electrical measurements on living cell,” Apply physics letters, vol. 81:24, 2002.
[15] M. Tanabe and J. Makinodan, “Development of micro channel array with detecting electrodes for electrophysiological biomedical sensor,” Micro Electro Mechanical Systems, pp. 407-410, 2003.
[16] S. Pandey, R. Mehrotra, S. Wykosky, and M. H. White, “Characterization of a MEMS BioChip for planar patch-clamp recording,” Solid-State Electronics, Vol. 48, pp. 2061-2066, 2004.
[17] J. Seo, C. Ionescu-Zanetti, J. Diamond, and R. Lal, “Integrated multiple patch-clamp array chip via lateral cell trapping junctions,” Applied physics letters, Vol. 84, 2004.
[18] O. P. Hamill, A. Marty, E. Neher, and B. Sakmann, “Improved patch clamp techniques for high resolution current recording from cells and cell-free membrane patches,” Pflugers Arch., Vol. 391, pp.85-100, 1981.
[19] J. Denyer, J. Worleyc, B. Coxb, G. Allenbya, and M. Banksa, “HTS approaches to voltage-gated ion channel drug discovery,” Drug Discovery Today, Vol. 3, pp. 323-332, 1998
[20] F. Breau, S. Maio-Cannon, R. Davis, J. Wu, J. DiCecco, and Y. Sun. “The neuron emulator: an undergraduate biomedical engineering design project.” 31st Annual Northeast Bioengineering Conference, Hoboken, NJ, pp. 29-30, April 2-3, 2005.
[21] Y.-C. Wu, J.-Y. Chen, R. Rieger, and Y. Sun, “A Neuron Emulator for Single-Electrode Settings,” in Proc. IEEE 37th Annual Northeast Bioengineering Conference (NEBEC), pp. 1-2., 2011
[22] J. G. Webster, Medical Instrumentation –Application and Design, 3rd ed., Wiley, 1998.
[23] A. S. Finkel and S. J. Redman, “Theory and operation of a single microelectrode voltage clamp,” J Neurosci. Methods, 11: 101-127, 1984.
[24] D. Purves, G. J. Augustine, D. Fitzpatrick, W. C. Hall, A.-S. LaMantia, and L. E. White, Neuroscience, Fifth Edition, Sinauer Associates, Inc., 2012
[25] T. H. Bullock and G. A. Horridge, Structure and Function in the Nervous Systems of Invertebrates, San Francisco: W. H. Freeman, 1965
[26] MultiClamp 700B, Computer-controlled Microelectrode Amplifier, Theory and Operation, Part Number 2500-0157 Rev D, Axon Instruments / Molecular Devices Corph., March 2005
[27] W. Purves and V. Minor, Life, the Science of Biology, Sunderland: Sinauer Association, 2001
[28] E. Kandel, J. Schwartz, and T. Jessell, Principles of Neural Science, New York: McGraw-Hill, 2000
[29] N. Carlson, Physiology of Behavior, Boston: Allyn & Bacon, 2009
[30] D. U. Silverthorn, Human Physiology, 4th/5th/6th edition, Pearson Education Inc., 2007
[31] D. Smetters, A. Majewska, and R. Yuste, “Detecting Action Potentials in Neuronal Populations with Calcium Imaging,” METHODS: A Companion to Methods in Enzymology, 18, 215-221, 1999
[32] C. P. J. de Kock and B. Sakmann, “High frequency action potential bursts (≥100 Hz) in L2/3 and L5B thick tufted neurons in anaesthetized and awake rat primary somatosensory cortex,” J Physiol., 586.14 pp 3353–3364, 2008
[33] F. H. Martini Ph.D., J. L. Nath Ph.D., and E. F. Bartholomew, Fundamentals of Anatomy & Physiology, 2011
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code