Responsive image
博碩士論文 etd-0815112-164250 詳細資訊
Title page for etd-0815112-164250
論文名稱
Title
以微控制器為基礎的軸突仿真器電路設計與實現
Design and Implementation of a Microcontroller-based Axon Emulator Circuit
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
85
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-30
繳交日期
Date of Submission
2012-08-15
關鍵字
Keywords
單一神經纖維動作電位、複合式動作電位、微控制器、動作電位、末梢神經、人工神經介面
Peripheral nerve, artificial nerve, microcontroller, action potential, SFAP, CAP
統計
Statistics
本論文已被瀏覽 5696 次,被下載 192
The thesis/dissertation has been browsed 5696 times, has been downloaded 192 times.
中文摘要
近年來,在記錄末梢神經訊號的先進電路與系統,有大量的研究與發展。本篇論文提出一個,可應用於測試生醫電位記錄系統的末梢神經仿真器,目的在於降低前期體外實驗的需要,並提供穩定、可重複性結果。此仿真器可以設置做為人工神經並模擬自然的神經行為,並提供人工神經介面給待測電路做測試,它在阻抗、電極電壓以及動作電位傳遞特色上可以代表一個真實的神經,它的動態特性被一連串可鏈結的微控制器控制,此仿真器可以選擇不同的情境,包含具刺激的單一神經纖維動作電位、複合式動作電位傳導、自然發生的神經交通以及額外的雜訊干擾。
此仿真器電路使用MATLAB以及Cadence Spectre做設計以及模擬,並以Microchip所開發的微控制器為基礎,設計並實現仿真器電路於印刷電路板上。
Abstract
In recent years, there has been significant research and development in the area of advanced circuits and systems for the recording of the electroneurogram (ENG) from peripheral nerve signals. This thesis presents an emulator of peripheral nerve for the testing of bio-potential recording systems under development reducing the need for early in vitro experiments and providing reproducible results. The emulator can be configured as an artificial nerve for ENG recording, which emulates the natural behavior of a nerve and provides an interface to the circuit under test. It is representative of a real nerve in terms of impedances, electrode voltages and action potential propagation characteristics as seen when recording from a nerve cuff electrode. Its dynamic behavior is controlled by a series of linked microcontrollers. The emulator provides different user selectable scenarios including single fiber action potential (SFAP), compound action potential propagation following stimulation (CAP), naturally occurring nerve traffic, and additional interference. This emulator circuit is designed using MATLAB and Cadence Spectre to perform circuit simulation. Measured results of the emulator based on a PCB including microcontrollers (PIC series, Microchip) are reported.
目次 Table of Contents
致謝 i
摘要 ii
Abstract iii
List of Figures vii
List of Tables xi
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Thesis Organization and Contributions 4
Chapter 2 Electroneurogram Recording Using Cuff Electrodes 6
2.1 The Electroneurogram Properties 6
2.2 Cuff Electrodes 10
2.3 Recording Configurations 12
Chapter 3 Axon Emulator Implementation and Design 15
3.1 System Description 15
3.2 MCU Programming and Hardware Design 18
3.3 TMAP Model 19
3.4 Circuit Model of a Myelinated Nerve Fiber in a Cuff 21
3.4.1 Implementation of Single Electrode Cuff 22
3.4.2 Implementation of Multi-electrode Cuff 24
3.5 Algorithm Implemented in the Microcontroller 25
3.5.1 MCU Position Defined 27
3.5.2 Scenario Selection 30
3.5.3 Single Fiber Action Potential (SFAP) 32
3.5.4 Compound Action Potential (CAP) 34
3.5.5 Natural Nerve Traffic 37
3.5.6 Additional Interference 43
Chapter 4 Simulation Results 45
4.1 Simulation Result of Axon Emulator 45
4.1.1 TMAP Model 46
4.1.2 The Action Potential Recorded from a Single Electrode Cuff 48
4.1.3 Complete Block Diagram of Axon Emulator 49
4.2 Simulation Result of Axons Emulator using Tripole Arranged Measurement 50
4.2.1 Simulation Result of SFAP 51
4.2.2 Simulation Result of CAP 53
Chapter 5 Measured Results 55
5.1 PCB Implementation for Emulator 55
5.2 Monopole Measurement for CAP Scenario 56
5.2.1 TMAP Channel 56
5.2.2 AP Channel 58
5.3 Tripole Measurement for CAP Scenario 60
5.4 Other Scenarios Measurement 62
5.4.1 Natural Nerve Traffic 62
5.4.2 Additional Interference 64
5.5 Comparison 65
Chapter 6 Conclusions and Future Work 67
6.1 Conclusions 67
6.2 Future Works 68
References 69
參考文獻 References
[1] K. Yoshida, G.A.M. Kurstjens, and K. Hennings, "Experimental Validation of the Nerve Conduction Velocity Selective Recording Technique using a Multi-contact Cuff Electrode,” Medical Engineering & Physics, no.31, pp. 1261–1270, 2009.
[2] G. A. M. Kurstjens, “Nerve Conduction Velocity Selective Recording Using a Multi-contact Cuff Electrode – A Case Study of In-Vitro Vagus Nerve Preparation,” in Proc. 15th Nordic-Baltic Conference on Biomedical Engineering and Medical Physics, vol. 34, 2011, pp. 261-263.
[3] D. Loi, C. Carboni, G. Angius, “Peripheral Neural Activity Recording and Stimulation System,” IEEE Trans. Biomedical Circuits & Systems, vol. 5, no. 4, pp. 368-379, 2011.
[4] J. Taylor and R. Rieger, “A Low Noise Front-end for Multiplexed ENG Recording using CMOS Technology,” Analog Integrated Circuits & Signal Processing, vol. 68, no. 2, pp. 163-174, 2011.
[5] J. Taylor, N. Donaldson, and J. Winter, “Multiple-electrode Nerve Cuffs for Low-velocity and Velocity-selective Neural Recording,” Med Biol Eng Comput., vol. 42, no. 5, pp. 634–643, 2004.
[6] R. Rieger, M. Schuettler, D. Pal, C. Clarke, P. Langlois, J. Taylor, and N. Donaldson, “Very Low-Noise ENG Amplifier System Using CMOS Technology,” IEEE Trans. Neural Systems Rehab. Eng., vol. 14, no. 4, pp. 427-437, Dec. 2006.
[7] R. Rieger, "Improved Nerve Signal Recording - Methods and Analogue Circuits," Series in Microelectronics, Vol. 153 ISBN 3-89649-989-0 Hartung-Gorre.2005, Jan. 2005.
[8] N. Donaldson, R. Rieger, M. Schuettler, and J. Taylor, “Noise and Selectivity of Velocity-Selective Multi-Electrode Nerve Cuffs,” Medical Biological Engineering Computing, no. 46, pp. 1005-1018, 2008.
[9] J. J. Struijk, “The Extracellular Potential of a Myelinated Nerve Fiber in an Unbounded Medium and in Nerve Cuff Models,” Biophysical Journal, Vol. 72, pp. 2457-2469, 1997.
[10] Online: http://en.wikipedia.org/wiki/PIC_microcontroller
[11] L.N.S. Andreasen, J.J. Struijk, and M. Haugland, “An Artificial Nerve Fiber for Evaluation of Nerve Cuff Electrodes,” in Proc. IEEE Int. Conf. Eng. in Medicine & Biology Society, vol. 5, 1997, pp. 1997-1999.
[12] G. G. Naples, J. T. Mortimer, A. Schreiner, and J. D. Sweeney, “A Spiral Nerve Cuff Electrode for Peripheral Nerve Stimulation,” IEEE Trans. Biomed. Eng., vol. 35, no. 11, pp. 905-916, 1988.
[13] J. J. Struijk, M. Thomsen, J. O. Larsen, and T. Sinkjar, “Cuff electrodes for long-term recordings of natural sensory information”, IEEE Engineering in Medicine and Biology, pp. 91–98, 1999.
[14] X. Shaojun, K.C. McGill, V.R. Hentz, “Experimental verification of nerve conduction linearity,” in Proc. 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol.4, pp. 1775-1776,1996.
[15] 2008 Microchip Technology Inc. DS39631E. PIC18F2420/2520/4420/4520. Data Sheet.
[16] M. Rahal, ”An improved configuration for the reduction of EMG in electrode cuff recordings: a theoretical approach,” Biomedical Engineering, IEEE Transactions on, vol. 47, no 9, pp.1281-1284, 2000.
[17] R. Rieger, J.-Y. Chen, "An Axon Emulator for Evaluation of Nerve Recording Systems," in Proc. IEEE ISCAS 2012, May 2012, pp. 1528 - 1531.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code